A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream

The default geometry restraints used in Phenix for the protein backbone have been upgraded to account for the known conformation-dependencies of bond angles and lengths.

[1]  F. Momany,et al.  Conformational transitions and geometry differences between low‐energy conformers of N‐acetyl‐N′‐methyl alanineamide: An ab initio study at the 4‐21G level with gradient relaxed geometries , 1984 .

[2]  Roland L. Dunbrack,et al.  Conformation dependence of backbone geometry in proteins. , 2009, Structure.

[3]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[4]  Dale E Tronrud,et al.  A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution. , 2011, Acta crystallographica. Section D, Biological crystallography.

[5]  A. Wlodawer,et al.  Proteins do not have strong spines after all. , 2009, Structure.

[6]  P. Karplus Experimentally observed conformation‐dependent geometry and hidden strain in proteins , 1996, Protein science : a publication of the Protein Society.

[7]  F. Momany,et al.  Ab initio studies of molecular geometries. 27. Optimized molecular structures and conformational analysis of N.alpha.-acetyl-N-methylalaninamide and comparison with peptide crystal data and empirical calculations , 1983 .

[8]  T. Hahn International tables for crystallography , 2002 .

[9]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[10]  Predictions of protein backbone structural parameters from first principles: Systematic comparisons of calculated N-C(.alpha.)-C' angles with high-resolution protein crystallographic results , 1995 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[13]  Nicholas K. Sauter,et al.  The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework , 2002 .

[14]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[15]  Robert Huber,et al.  Structure quality and target parameters , 2006 .

[16]  Roland L Dunbrack,et al.  A forward-looking suggestion for resolving the stereochemical restraints debate: ideal geometry functions. , 2008, Acta crystallographica. Section D, Biological crystallography.

[17]  Dale E Tronrud,et al.  Using a conformation-dependent stereochemical library improves crystallographic refinement of proteins. , 2010, Acta crystallographica. Section D, Biological crystallography.

[18]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[19]  P. Karplus,et al.  Conformation‐dependent backbone geometry restraints set a new standard for protein crystallographic refinement , 2014, The FEBS journal.

[20]  G. Langlet,et al.  International Tables for Crystallography , 2002 .