A stochastic computational multiscale approach; Application to MEMS resonators

Abstract The aim of this work is to develop a stochastic multiscale model for polycrystalline materials, which accounts for the uncertainties in the micro-structure. At the finest scale, we model the micro-structure using a random Voronoi tessellation, each grain being assigned a random orientation. Then, we apply a computational homogenization procedure on statistical volume elements to obtain a stochastic characterization of the elasticity tensor at the meso-scale. A random field of the meso-scale elasticity tensor can thus be generated based on the information obtained from the SVE simulations. Finally, using a stochastic finite element method, these meso-scale uncertainties are propagated to the coarser scale. As an illustration we study the resonance frequencies of MEMS micro-beams made of poly-silicon materials, and we show that the stochastic multiscale approach predicts results in agreement with a Monte Carlo analysis applied directly on the fine finite-element model, i.e. with an explicit discretization of the grains.

[1]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[2]  Heyrim Cho,et al.  Karhunen-Loève expansion for multi-correlated stochastic processes , 2013 .

[3]  Christian Soize,et al.  Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.

[4]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[5]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[6]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[7]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[8]  Christian Soize,et al.  A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures , 2011 .

[9]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[10]  Patrizia Trovalusci,et al.  Scale{dependent homogenization of random composites as micropolar continua , 2015 .

[11]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[12]  Christian Soize,et al.  Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data , 2010 .

[13]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[14]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[15]  George Deodatis,et al.  Simulation of homogeneous nonGaussian stochastic vector fields , 1998 .

[16]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[17]  Mgd Marc Geers,et al.  Multi-scale computational homogenization of structured thin sheets , 2007 .

[18]  Wei Chen,et al.  Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis , 2009 .

[19]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[20]  J. Golinval,et al.  Finite Element Modeling of Thermoelastic Damping in Filleted Micro-Beams , 2007, 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007.

[21]  I. Doghri,et al.  A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites , 2013 .

[22]  Masanobu Shinozuka,et al.  Random Eigenvalue Problems in Structural Analysis , 1971 .

[23]  Silvano Erlicher,et al.  Pseudopotentials and Loading Surfaces for an Endochronic Plasticity Theory with Isotropic Damage , 2008, 0901.1447.

[24]  J. Reddy ON LOCKING-FREE SHEAR DEFORMABLE BEAM FINITE ELEMENTS , 1997 .

[25]  Martin Ostoja-Starzewski,et al.  Stochastic finite elements as a bridge between random material microstructure and global response , 1999 .

[26]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[27]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[28]  Michael P. Sena,et al.  Stiffness tensor random fields through upscaling of planar random materials , 2013 .

[29]  Ludovic Noels,et al.  Multiscale modelling framework for the fracture of thin brittle polycrystalline films: application to polysilicon , 2014 .

[30]  T. Kenny,et al.  What is the Young's Modulus of Silicon? , 2010, Journal of Microelectromechanical Systems.

[31]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[32]  Pedro Peralta,et al.  VALIDATION OF A PROBABILISTIC MODEL FOR MESOSCALE ELASTICITY TENSOR OF RANDOM POLYCRYSTALS , 2013 .

[33]  Wei Chen,et al.  Statistical volume element method for predicting microstructure–constitutive property relations , 2008 .

[34]  Vittorio Gusella,et al.  Random field and homogenization for masonry with nonperiodic microstructure , 2006 .

[35]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[36]  M. Shinozuka,et al.  Digital simulation of random processes and its applications , 1972 .

[37]  R. Pyrz,et al.  IUTAM Symposium on Microstructure-Property Interactions in Composite Materials : proceedings of the IUTAM symposium held in Aalborg, Denmark, 22-25 August 1994 , 1995 .

[38]  Amine Ouaar,et al.  Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms , 2003 .

[39]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[40]  Roger G. Ghanem,et al.  A Bounded Random Matrix Approach for Stochastic Upscaling , 2009, Multiscale Model. Simul..

[41]  Sarah C. Baxter,et al.  Characterization of Random Composites Using Moving-Window Technique , 2000 .

[42]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[43]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[44]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[45]  A. Kalamkarov,et al.  Asymptotic Homogenization of Composite Materials and Structures , 2009 .

[46]  Christophe Geuzaine,et al.  Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation , 2012 .

[47]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[48]  Oreste S. Bursi,et al.  Bouc–Wen-Type Models with Stiffness Degradation: Thermodynamic Analysis and Applications , 2008, 0901.1448.

[49]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[50]  Ludovic Noels,et al.  Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous Galerkin formulation , 2013 .

[51]  Wei Wu,et al.  A nonintrusive stochastic multiscale solver , 2011 .

[52]  Masanobu Shinozuka,et al.  Simulation of Multivariate and Multidimensional Random Processes , 1971 .

[53]  Hervé Moulinec,et al.  A FFT-Based Numerical Method for Computing the Mechanical Properties of Composites from Images of their Microstructures , 1995 .