Demands on the airframe industry have shifted over the years, but they have always moved in the direction of lower weight, higher damage tolerance, and longer-term durability. Up to the 1960s, the greatest need was for high strength to reduce weight. In the 1970s, higher fracture toughness and corrosion resistance were sought for enhanced damage tolerance and durability. In the early 1980s, the requirement for reduced weight was renewed, but by the late 1980s and early 1990s, durability became a concern again. Today`s focus is on materials that can help achieve low-cost manufacturing without sacrificing performance; future needs are likely to include both affordability and higher performance. This article describes the development of high-strength aluminum alloy materials that have satisfied past and current requirements, and identifies possible aluminum-intensive approaches that combine alternate design concepts and emerging materials technologies for low-cost, low-weight, damage-tolerant, and durable airframe structures of the future.