Degree Kirchhoff Index of Bicyclic Graphs

Abstract Let $G$ be a connected graph with vertex set $V\left( G \right)$ .The degree Kirchhoff index of $G$ is defined as ${{S}^{\prime }}\left( G \right)\,=\,\sum{_{\left\{ u,v \right\}\,\subseteq \,V\left( G \right)}d\left( u \right)d\left( v \right)R\left( u,\,v \right)}$ , where $d\left( u \right)$ is the degree of vertex $u$ , and $R\left( u,\,v \right)$ denotes the resistance distance between vertices $u$ and $v$ . In this paper, we characterize the graphs having maximum and minimum degree Kirchhoff index among all $n$ -vertex bicyclic graphs with exactly two cycles.

[1]  Ioan Tomescu Properties of connected graphs having minimum degree distance , 2009, Discret. Math..

[2]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[3]  Ioan Tomescu,et al.  Some Extremal Properties of the Degree Distance of a Graph , 1999, Discret. Appl. Math..

[4]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[5]  Darko Dimitrov,et al.  Bounds on Gutman Index , 2012 .

[6]  Hanyuan Deng,et al.  The extremal Kirchhoff index of a class of unicyclic graphs 1 , 2009 .

[7]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[8]  Lihua Feng,et al.  On the Wiener index of unicyclic graphs with given girth , 2010, Ars Comb..

[9]  Aleksandar Ili,et al.  CALCULATING THE DEGREE DISTANCE OF PARTIAL HAMMING GRAPHS , 2010 .

[10]  Ante Graovac,et al.  On Vertex–Degree–Based Molecular Structure Descriptors , 2011 .

[11]  Sebastian M. Cioaba,et al.  The minimum degree distance of graphs of given order and size , 2008, Discret. Appl. Math..

[12]  M. Randic,et al.  Resistance distance , 1993 .

[13]  Peter Dankelmann,et al.  The edge-Wiener index of a graph , 2009, Discret. Math..

[14]  Weijun Liu,et al.  The Maximal Gutman Index of Bicyclic Graphs , 2011 .

[15]  Bo Zhou,et al.  The Kirchhoff index and the matching number , 2009 .

[16]  Yousef Alavi,et al.  Graph theory, combinatorics, and applications , 2017 .

[17]  Peter Dankelmann,et al.  On the degree distance of a graph , 2009, Discret. Appl. Math..

[18]  I. Gutman,et al.  Wiener Index of Trees: Theory and Applications , 2001 .

[19]  Peter Dankelmann,et al.  Degree distance of unicyclic and bicyclic graphs , 2011, Discret. Appl. Math..

[20]  Russell Merris,et al.  The Laplacian Spectrum of a Graph II , 1994, SIAM J. Discret. Math..

[21]  Fuji Zhang,et al.  Resistance distance and the normalized Laplacian spectrum , 2007, Discret. Appl. Math..

[22]  Ivan Gutman,et al.  Selected properties of the Schultz molecular topological index , 1994, J. Chem. Inf. Comput. Sci..

[23]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[24]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[25]  Boris Furtula,et al.  Distance in Molecular Graphs Theory , 2012 .

[26]  Alexandru I. Tomescu Unicyclic and bicyclic graphs having minimum degree distance , 2008, Discret. Appl. Math..

[27]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[28]  R. Bapat,et al.  A Simple Method for Computing Resistance Distance , 2003 .

[29]  Shubo Chen,et al.  Extremal Modified Schultz Index of Bicyclic Graphs , 2010 .

[30]  Hanyuan Deng,et al.  The second maximal and minimal Kirchhoff indices of unicyclic graphs 1 , 2009 .

[31]  Hanyuan Deng On the minimum Kirchhoff index of graphs with a given number of cut-edges 1 , 2010 .

[32]  Dejan Plavšić,et al.  Molecular topological index: a relation with the Wiener index , 1992, J. Chem. Inf. Comput. Sci..

[33]  Guihai Yu,et al.  Degree Kirchhoff Index of Unicyclic Graphs , 2013 .

[34]  José Luis Palacios,et al.  Another look at the degree-Kirchhoff index , 2010 .

[35]  Douglas J. Klein,et al.  Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances , 1994 .

[36]  Roberto Todeschini,et al.  Molecular descriptors for chemoinformatics , 2009 .

[37]  Andrey A. Dobrynin,et al.  Degree Distance of a Graph: A Degree Analog of the Wiener Index , 1994, J. Chem. Inf. Comput. Sci..

[38]  Yujun Yang,et al.  Unicyclic graphs with extremal Kirchhoff index , 2008 .