Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites

Abstract An understanding of the precise correlation between the presence of secondary phases and material damping has eluded investigators, partly as a result of the fact that often there are various mechanisms involved. As a step towards the clarification of damping phenomena in metals and alloys, this paper provides a systematic review of the studies that have been completed on the damping mechanisms present in metals and alloys, with particular emphasis on precipitation. The damping mechanisms associated with secondary phases in metals and alloys have been subdivided into four categories, namely interface damping theory, thermal mismatch-induced dislocation damping theory, interaction damping theory and the rule of mixtures damping theory. A number of alloy systems are discussed to demonstrate the applicability of the four types of theory and the level of understanding of these complex mechanisms. As an extension of precipitation damping theory, the damping behaviour and mechanisms in particle-reinforced metal matrix composites are extensively discussed.

[1]  H. Ledbetter,et al.  Young's modulus and the internal friction of an SiC-particle-reinforced aluminum composite , 1984 .

[2]  David L. Bourell,et al.  A theoretical and experimental study of aluminum alloy 6061-SiC metal matrix composite to identify the operative mechanism for accelerated aging , 1989 .

[3]  R. Decker alloy design,using second phases , 1973 .

[4]  T. Kê Grain Boundary Relaxation and the Mechanism of Embrittlement of Copper by Bismuth , 1949 .

[5]  G. Schoeck Internal Friction Due to Precipitation , 1969 .

[6]  E. Rabinowicz,et al.  Friction and Wear of Materials , 1966 .

[7]  A. Wolfenden,et al.  Mechanical damping and dynamic modulus measurements in alumina and tungsten fibre-reinforced aluminium composites , 1989 .

[8]  T. Srivatsan,et al.  Microstructural evolution and mechanical properties of SiC/Al2O3 particulate-reinforced spray-deposited metal-matrix composites , 1993, Journal of Materials Science.

[9]  K. Entwistle,et al.  The internal friction of Al-Si alloys and the nucleation of Si precipitates , 1978 .

[10]  Z. Z. Zhang,et al.  Elastic modulus and continuous yielding behaviour of ferritic spheroidal graphite cast iron , 1992 .

[11]  E. Lavernia,et al.  Interaction mechanisms between ceramic particles and atomized metallic droplets , 1992 .

[12]  G. Weatherly,et al.  An electron microscope investigation of the interfacial structure of semi-coherent precipitates , 1968 .

[13]  Z. L. Pan,et al.  High-damping metals and alloys , 1991 .

[14]  R. Warren Metal matrix composites—Thermomechanical behaviour: M. Taya and R.J. Arsenault Pergamon Press plc, Oxford, UK, 1989 (£35 hardback, £15.50 softback) , 1991 .

[15]  K. Chawla,et al.  Initial dislocation distributions in tungsten fibre-copper composites , 1972 .

[16]  T. Savaşkan,et al.  The Creep Kinetics of Zinc-Aluminium-Based Alloys , 1986 .

[17]  M. Yamanaka,et al.  High-temperature dependence of the internal friction and modulus change of tetragonal ZrO2, Si3N4 and SiC , 1990 .

[18]  E. Lavernia,et al.  Strain amplitude dependence of 6061 Al/graphite MMC damping , 1992 .

[19]  E. Lavernia,et al.  Strengthening behavior of particulate reinforced MMCs , 1992 .

[20]  M. N. Gungor,et al.  Damping behavior of 6061Al/Gr metal matrix composites , 1993 .

[21]  R. J. Arsenault,et al.  Metal matrix composites : mechanisms and properties , 1991 .

[22]  Thomas A. Read,et al.  The Internal Friction of Single Metal Crystals , 1940 .

[23]  A. Malhotra,et al.  Characterization of room-temperature , 1993, Metallurgical and Materials Transactions A.

[24]  M. Taya,et al.  Metal Matrix Composites: Thermomechanical Behavior , 1989 .

[25]  E. Lavernia,et al.  Effect of SiC and graphite particulates on the damping behavior of metal matrix composites , 1994 .

[26]  G. Welsch,et al.  Elastic moduli and tensile and physical properties of heat-treated and quenched powder metallurgical Ti-6Al-4V alloy , 1991 .

[27]  A. Damask,et al.  Internal Friction Peak Associated with Precipitation in an Al–Ag Alloy , 1955 .

[28]  H. Numakura,et al.  Internal-friction and electron microscopy studies of cold-worked single-crystal and polycrystalline titanium , 1991 .

[29]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[30]  D. H. Rogers An Extension of a Theory of Mechanical Damping Due to Dislocations , 1962 .

[31]  T. Kê,et al.  Fine Structure of the Internal Friction Peak around Room Temperature in Cold-Worked and Partially Annealed Al-0. 13wt%Cu , 1991 .

[32]  E. Lavernia,et al.  Use of spray techniques to synthesize particulate-reinforced metal-matrix composites , 1992 .

[33]  J. Hancock,et al.  Interfacial slip and damping in fibre reinforced composites , 1978 .

[34]  C. Esnouf,et al.  Internal Friction at Medium Temperatures in High Purity Magnesium , 1990 .

[35]  Kenneth E. Lulay,et al.  Strengthening of a particulate metal matrix composite by quenching , 1991 .

[36]  R. Fougères,et al.  Internal damping effects due to the thermal expansion mismatch between aluminium and silicon , 1992 .

[37]  E. Lavernia,et al.  Damping behavior of particulate reinforced 2519 Al metal matrix composites , 1993 .

[38]  M. Tanaka,et al.  Internal friction by a second-phase particle in AlGe alloy , 1983 .

[39]  J. Mitchell,et al.  The observation of polyhedral sub-structures in crystals of silver bromide , 1953 .

[40]  M. Hinai,et al.  The influence of cold-working on the damping capacity of Al-Zn alloys , 1983 .

[41]  A. Granato,et al.  Theory of Mechanical Damping Due to Dislocations , 1956 .

[42]  Richard D. Kaverman Reinforced Plastics and Composites , 1991 .

[43]  S. Kojima,et al.  Superplasticity and internal friction of a superplastic Zn-22%Al eutectoid alloy , 1991 .

[44]  C. Zener Elasticity and anelasticity of metals , 1948 .

[45]  J. Nutting,et al.  The metallography of precipitation in an Al-16% Ag alloy , 1961 .

[46]  E. Lavernia,et al.  Processing techniques for particulate-reinforced metal aluminium matrix composites , 1991 .

[47]  A. Granato,et al.  Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies , 1956 .

[48]  E. Lavernia,et al.  Dislocation-induced damping in metal matrix composites , 1993 .

[49]  R. M. Broudy,et al.  Dislocations and Mechanical Properties of Crystals. , 1958 .

[50]  N. Murali,et al.  Improved damping capacity and machinability of graphite particle-aluminum alloy composites , 1976 .

[51]  G. Purdy,et al.  The effect of graphite on the mechanical properties of cast irons , 1989 .

[52]  A. Kelly,et al.  Precipitate hardening in an aluminium-copper alloy , 1961 .

[53]  A. Deakin,et al.  Elastic analysis of deformation near a spherical carbon particle embedded in iron , 1987 .

[54]  I. Ritchie,et al.  High Damping Alloys—The Metallurgist's Cure for Unwanted Vibrations , 1987 .

[55]  C. Su,et al.  Internal friction in high-purity aluminum single crystals , 1984 .

[56]  T. Kê Stress Relaxation across Grain Boundaries in Metals , 1947 .

[57]  A. Malhotra,et al.  EXPERIMENTAL AND THEORETICAL ASPECTS OF INTERNAL FRICTION ASSOCIATED WITH THE MELTING OF EMBEDDED PARTICLES , 1993 .

[58]  F. P. Bowden,et al.  The Friction and Lubrication of Solids , 1964 .

[59]  A. V. Granato,et al.  Temperature dependence of amplitude‐dependent dislocation damping , 1981 .

[60]  R. Shinoda,et al.  Internal friction due to G-P zones in pure Al-16 wt % Ag and Al-16 wt % Ag-0.2 wt % Fe-0.1 wt % Si alloys , 1991, Journal of Materials Science.

[61]  R. Bhagat,et al.  The damping performance of aluminum-based composites , 1990 .

[62]  M. N. Gungor,et al.  The effect of porosity on the microstructural damping response of 6061 aluminium alloy , 1993, Journal of Materials Science.

[63]  M. Suwa,et al.  Effect of Graphite Particle Size on the Wear of Graphite-dispersed Bronze Castings , 1978 .

[64]  A. Nowick Anelastic Effects Arising from Precipitation in Aluminum‐Zinc Alloys , 1951 .

[65]  Xianfang Zhu Stable damping associated with linear viscous motion of the interface in a multiphase Al‐Zn alloy , 1990 .

[66]  R. J. Perez,et al.  Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials , 1993 .

[67]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[68]  T. Kê Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals , 1947 .

[69]  A. Bakker Mechanical Behaviour of Materials , 1995 .

[70]  Vikram K. Kinra,et al.  An Experimental Technique for Determining a Measure of Structural Damping , 1988 .

[71]  M. Tan,et al.  Effect of precipitation on internal friction of rapidly solidified AlSi alloys , 1989 .

[72]  G. Carpenter,et al.  Characterization of graphite-aluminium composites using analytical electron microscopy , 1992 .

[73]  J. Williams,et al.  Microstructural studies of a Ni-W directionally solidified eutectic composite , 1975 .

[74]  M. Hinai,et al.  Damping Characteristics of Cold-Worked Al–Si Alloys , 1986 .

[75]  B. Prasad,et al.  The significance of the matrix microstructure on the solid lubrication characteristics of graphite in aluminium alloys , 1991 .

[76]  R. Arsenault,et al.  Dislocation generation due to differences between the coefficients of thermal expansion , 1986 .

[77]  M. Ashby,et al.  On the generation of dislocations at misfitting particles in a ductile matrix , 1969 .

[78]  G. Weatherly An Electron-Microscope Investigation of the Lamellar Al-CuAl2 Eutectic , 1968 .

[79]  R. Fougères,et al.  A dislocation model for internal damping due to the thermal expansion mismatch between matrix and particles in microheterogeneous materials , 1993 .

[80]  R. J. Arsenault,et al.  Anin situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites , 1986 .

[81]  M. Hinai,et al.  Effect of Cold Working on Mechanical Damping Capacity of Al–Co Alloys , 1993 .

[82]  R. Batist Internal Friction of Structural Defects in Crystalline Solids , 1972 .

[83]  F. Goodwin,et al.  Characterization of the damping properties of die-cast zinc-aluminum alloys , 1991 .

[84]  M. Hinai,et al.  Vibration Damping Characteristics of Al–Ge Alloys , 1991 .

[85]  B. D. Agarwal,et al.  Damping Characteristics of Particulate Composites With Imperfect Bonding , 1982 .

[86]  J. C. Earthman,et al.  On the mechanism of grain formation during spray atomization and deposition , 1992 .

[87]  B. Lazan Damping of materials and members in structural mechanics , 1968 .

[88]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[89]  R. Arsenault,et al.  Metal Matrix Composites: Processing and Interfaces , 1991 .

[90]  G. Schoeck,et al.  Internal Friction in AlAg Alloys , 1969 .

[91]  M. Ashby,et al.  The stress at which dislocations are generated at a particle-matrix interface , 1969 .

[92]  P. Shewmon Transformations in metals , 1969 .

[93]  Farghalli A. Mohamed,et al.  Particulate reinforced metal matrix composites — a review , 1991, Journal of Materials Science.

[94]  K. Sagoe-Crentsil,et al.  The effect of lattice misfit on the interface structure of equilibrated γ-Ag2Al precipitates , 1990 .

[95]  R. Fougères,et al.  Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites , 1993 .

[96]  P. Cui,et al.  Anelastic relaxation peak associated with the presence of incoherent θ phase in Al-4wt.%Cu alloy , 1992 .

[97]  G. Welsch,et al.  Young's modulus and damping of Ti6Al4V alloy as a function of heat treatment and oxygen concentration , 1990 .