The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei

The northern pike is the most frequently studied member of the Esociformes, the closest order to the diverse and economically important Salmoniformes. The ancestor of all salmonids purportedly experienced a whole-genome duplication (WGD) event, making salmonid species ideal for studying the early impacts of genome duplication while complicating their use in wider analyses of teleost evolution. Studies suggest that the Esociformes diverged from the salmonid lineage prior to the WGD, supporting the use of northern pike as a pre-duplication outgroup. Here we present the first genome assembly, reference transcriptome and linkage map for northern pike, and evaluate the suitability of this species to provide a representative pre-duplication genome for future studies of salmonid and teleost evolution. The northern pike genome sequence is composed of 94,267 contigs (N50 = 16,909 bp) contained in 5,688 scaffolds (N50 = 700,535 bp); the total scaffolded genome size is 878 million bases. Multiple lines of evidence suggest that over 96% of the protein-coding genome is present in the genome assembly. The reference transcriptome was constructed from 13 tissues and contains 38,696 transcripts, which are accompanied by normalized expression data in all tissues. Gene-prediction analysis produced a total of 19,601 northern pike-specific gene models. The first-generation linkage map identifies 25 linkage groups, in agreement with northern pike's diploid karyotype of 2N = 50, and facilitates the placement of 46% of assembled bases onto linkage groups. Analyses reveal a high degree of conserved synteny between northern pike and other model teleost genomes. While conservation of gene order is limited to smaller syntenic blocks, the wider conservation of genome organization implies the northern pike exhibits a suitable approximation of a non-duplicated Protacanthopterygiian genome. This dataset will facilitate future studies of esocid biology and empower ongoing examinations of the Atlantic salmon and rainbow trout genomes by facilitating their comparison with other major teleost groups.

[1]  D. Chalopin,et al.  The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates , 2014, Nature Communications.

[2]  L. A. Panchenko,et al.  Non-random DNA fragmentation in next-generation sequencing , 2014, Scientific Reports.

[3]  I. Johnston,et al.  A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification , 2014, Proceedings of the Royal Society B: Biological Sciences.

[4]  David Haussler,et al.  The UCSC Genome Browser database: 2014 update , 2013, Nucleic Acids Res..

[5]  T. Cezard,et al.  Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing , 2014, BMC Genomics.

[6]  L. Bernatchez,et al.  EST-based microsatellites for northern pike (Esox lucius) and cross-amplification across all Esox species , 2014, Conservation Genetics Resources.

[7]  Vaishali Katju,et al.  Copy-number changes in evolution: rates, fitness effects and adaptive significance , 2013, Front. Genet..

[8]  M. Miya,et al.  Pike and salmon as sister taxa: detailed intraclade resolution and divergence time estimation of Esociformes + Salmoniformes based on whole mitochondrial genome sequences. , 2013, Gene.

[9]  Jill L. Wegrzyn,et al.  Insights into the Loblolly Pine Genome: Characterization of BAC and Fosmid Sequences , 2013, PloS one.

[10]  M. Bekaert,et al.  Mapping the sex determination locus in the Atlantic halibut (Hippoglossus hippoglossus) using RAD sequencing , 2013, BMC Genomics.

[11]  B. Koop,et al.  Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene , 2013, BMC Genomics.

[12]  J. Yokoyama,et al.  Characterization of comparative genome‐derived simple sequence repeats for acanthopterygian fishes , 2013, Molecular ecology resources.

[13]  Anton J. Enright,et al.  The zebrafish reference genome sequence and its relationship to the human genome , 2013, Nature.

[14]  Thaine W. Rowley,et al.  The Tree of Life and a New Classification of Bony Fishes , 2013, PLoS currents.

[15]  Sonja J. Prohaska,et al.  Analysis of the African coelacanth genome sheds light on tetrapod evolution , 2013, Nature.

[16]  Baocheng Guo,et al.  Integrating multi-origin expression data improves the resolution of deep phylogeny of ray-finned fish (Actinopterygii) , 2012, Scientific Reports.

[17]  Peter J. A. Cock,et al.  Bio.Phylo: A unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython , 2012, BMC Bioinformatics.

[18]  Peter C. Wainwright,et al.  Resolution of ray-finned fish phylogeny and timing of diversification , 2012, Proceedings of the National Academy of Sciences.

[19]  Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications , 2012, BMC Genomics.

[20]  Mark Stitt,et al.  RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics , 2012, Nucleic Acids Res..

[21]  R. Good,et al.  Universal primers for fluorescent labelling of PCR fragments—an efficient and cost‐effective approach to genotyping by fluorescence , 2012, Molecular ecology resources.

[22]  Alex A. Pollen,et al.  The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.

[23]  Yang Wang,et al.  Transcriptome Profiling of Testis during Sexual Maturation Stages in Eriocheir sinensis Using Illumina Sequencing , 2012, PloS one.

[24]  Jiongtang Li,et al.  Transcriptome analysis reveals the time of the fourth round of genome duplication in common carp (Cyprinus carpio) , 2012, BMC Genomics.

[25]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[26]  S. Omholt,et al.  A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns , 2011, BMC Genomics.

[27]  B. Koop,et al.  Assessment of population structure in Pacific Lepeophtheirus salmonis (Krøyer) using single nucleotide polymorphism and microsatellite genetic markers , 2011 .

[28]  Inge Jonassen,et al.  The genome sequence of Atlantic cod reveals a unique immune system , 2011, Nature.

[29]  A. Amores,et al.  Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences , 2011, G3: Genes | Genomes | Genetics.

[30]  A. Amores,et al.  Genome Evolution and Meiotic Maps by Massively Parallel DNA Sequencing: Spotted Gar, an Outgroup for the Teleost Genome Duplication , 2011, Genetics.

[31]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[32]  T. Flutre,et al.  Considering Transposable Element Diversification in De Novo Annotation Approaches , 2011, PloS one.

[33]  Z. Jeney,et al.  Genetic characterization of 18 novel microsatellite loci in northern pike (Esox lucius L.) , 2010, Genetics and molecular biology.

[34]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[35]  G. Lei,et al.  Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes. , 2010, Molecular phylogenetics and evolution.

[36]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[37]  Steven J. M. Jones,et al.  Sequencing the genome of the Atlantic salmon (Salmo salar) , 2010, Genome Biology.

[38]  D. Liberles,et al.  Evolution after Gene Duplication: Dittmar/Evolution After Gene Duplication , 2010 .

[39]  D. Liberles,et al.  Evolution after gene duplication , 2010 .

[40]  Steven J. M. Jones,et al.  Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome , 2010, BMC Genomics.

[41]  A. Meyer,et al.  The evolutionary significance of ancient genome duplications , 2009, Nature Reviews Genetics.

[42]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[43]  Kenneth H. Wolfe,et al.  Turning a hobby into a job: How duplicated genes find new functions , 2008, Nature Reviews Genetics.

[44]  Y. Palti,et al.  A second generation genetic map for rainbow trout (Oncorhynchus mykiss) , 2008, BMC Genetics.

[45]  Richard A. Moore,et al.  A salmonid EST genomic study: genes, duplications, phylogeny and microarrays , 2008, BMC Genomics.

[46]  K. H. Wolfe,et al.  Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis , 2008, Proceedings of the National Academy of Sciences.

[47]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[48]  J. Craig,et al.  A short review of pike ecology , 2008, Hydrobiologia.

[49]  P. Nilsson,et al.  Current and future directions for pike ecology and management: a summary and synthesis , 2008, Hydrobiologia.

[50]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[51]  B. Koop,et al.  Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids , 2007, BMC Genomics.

[52]  Fumiko Ohta,et al.  The medaka draft genome and insights into vertebrate genome evolution , 2007, Nature.

[53]  J. J. Day,et al.  Fishes of the World, 4th Edition , 2006 .

[54]  O. Jaillon,et al.  Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. , 2006, Molecular biology and evolution.

[55]  Steven Maere,et al.  The gain and loss of genes during 600 million years of vertebrate evolution , 2006, Genome Biology.

[56]  J. Mank,et al.  Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes , 2006, Genetica.

[57]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[58]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[59]  Jerzy K. Kulski,et al.  Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry , 2005, Immunogenetics.

[60]  Charles E. Chapple,et al.  Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype , 2004, Nature.

[61]  P. Hebert,et al.  Genome-size evolution in fishes , 2004 .

[62]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[63]  Alan Christoffels,et al.  Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. , 2004, Molecular biology and evolution.

[64]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[65]  Klaas Vandepoele,et al.  Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Beamish,et al.  Karyotypes and DNA values for members of the suborder Esocoidei (Osteichthyes: Salmoniformes) , 1971, Chromosoma.

[67]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[68]  J. Morin,et al.  Five new microsatellite markers for Northern pike (Esox lucius) , 2003 .

[69]  Paul D N Hebert,et al.  The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. , 2003, Genome.

[70]  A. Meyer,et al.  Genome duplication, a trait shared by 22000 species of ray-finned fish. , 2003, Genome research.

[71]  L. Miller,et al.  A Review of Northern Pike Population Genetics Research andIts Implications for Management , 2003 .

[72]  Caird Rexroad,et al.  Status and opportunities for genomics research with rainbow trout. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[73]  Paramvir S. Dehal,et al.  Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes , 2002, Science.

[74]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[75]  J. Postlethwait,et al.  Sex-specific recombination rates in zebrafish (Danio rerio). , 2002, Genetics.

[76]  R. Voorrips MapChart: software for the graphical presentation of linkage maps and QTLs. , 2002, The Journal of heredity.

[77]  E. Crossman,et al.  Chromosomal NOR Phenotype and C-Banded Karyotype of Olympic Mudminnow, Novumbra hubbsi (Euteleostei: Umbridae) , 2001, Copeia.

[78]  C. Hew,et al.  Antifreeze proteins of teleost fishes. , 2001, Annual review of physiology.

[79]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[80]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[81]  K. Wolfe Robustness—it's not where you think it is , 2000, Nature Genetics.

[82]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[83]  A. Vinogradov Genome size and GC-percent in vertebrates as determined by flow cytometry: the triangular relationship. , 1998, Cytometry.

[84]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[85]  A. Kapuscinski,et al.  Notes: Microsatellite DNA Markers Reveal New Levels of Genetic Variation in Northern Pike , 1996 .

[86]  Jerzy Jurka,et al.  Censor - a Program for Identification and Elimination of Repetitive Elements From DNA Sequences , 1996, Comput. Chem..

[87]  E. Crossman,et al.  Chromosomal NOR phenotypes in North American pikes and pickerels, genus Esox, with notes on the Umbridae (Euteleostei: Esocae) , 1994 .

[88]  J. S. Nelson,et al.  Fishes of the World, 3rd Edition , 1994 .

[89]  A. Raat Synopsis of biological data on the Northern pike, Esox lucius Linnaeus, 1758 , 1989 .

[90]  F. Allendorf,et al.  Tetraploidy and the Evolution of Salmonid Fishes , 1984 .

[91]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .