Symmetry classes of alternating-sign matrices under one roof

In a previous article [math.CO/9712207], we derived the alternating-sign matrix (ASM) theorem from the Izergin-Korepin determinant for a partition function for square ice with domain wall boundary. Here we show that the same argument enumerates three other symmetry classes of alternating-sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half-turn-symmetric ASMs), and even QTSASMs (quarter-turn-symmetric ASMs). The VSASM enumeration was conjectured by Mills; the others by Robbins [math.CO/0008045]. We introduce several new types of ASMs: UASMs (ASMs with a U-turn side), UUASMs (two U-turn sides), OSASMs (off-diagonally symmetric ASMs), OOSASMs (off-diagonally, off-antidiagonally symmetric), and UOSASMs (off-diagonally symmetric with U-turn sides). UASMs generalize VSASMs, while UUASMs generalize VHSASMs (vertically and horizontally symmetric ASMs) and another new class, VHPASMs (vertically and horizontally perverse). OSASMs, OOSASMs, and UOSASMs are related to the remaining symmetry classes of ASMs, namely DSASMs (diagonally symmetric), DASASMs (diagonally, anti-diagonally symmetric), and TSASMs (totally symmetric ASMs). We enumerate several of these new classes, and we provide several 2-enumerations and 3-enumerations. Our main technical tool is a set of multi-parameter determinant and Pfaffian formulas generalizing the Izergin-Korepin determinant for ASMs and the Tsuchiya determinant for UASMs [solv-int/9804010]. We evaluate specializations of the determinants and Pfaffians using the factor exhaustion method.

[1]  D. A. Coker,et al.  Determinant formula for the six-vertex model , 1992 .

[2]  E. L.P.T.H.,et al.  Boundary K-matrices for the XYZ , XXZ and XXX spin chains , 2022 .

[3]  Mihai Ciucu,et al.  Enumeration of Perfect Matchings in Graphs with Reflective Symmetry , 1997, J. Comb. Theory, Ser. A.

[4]  Osamu Tsuchiya,et al.  Determinant formula for the six-vertex model with reflecting end , 1998, solv-int/9804010.

[5]  Horst Sachs,et al.  Remark on the Dimer Problem , 1994, Discret. Appl. Math..

[6]  J. Propp,et al.  Alternating sign matrices and domino tilings , 1991, math/9201305.

[7]  Thermodynamic limit of the six-vertex model with domain wall boundary conditions , 2000, cond-mat/0004250.

[8]  William Jockusch Perfect Matchings and Perfect Squares , 1994, J. Comb. Theory, Ser. A.

[9]  David P. Robbins Symmetry Classes of Alternating Sign Matrices , 2000 .

[10]  I. Cherednik Factorizing particles on a half-line and root systems , 1984 .

[11]  Thomas S. Sundquist,et al.  Two Variable Pfaffian Identities and Symmetric Functions , 1996 .

[12]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[13]  Doron Zeilberger,et al.  Proof of the alternating sign matrix conjecture , 1994, Electron. J. Comb..

[14]  Mihai Ciucu,et al.  Perfect Matchings of Cellular Graphs , 1996 .

[15]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[16]  Kiyoshi Sogo,et al.  Time-Dependent Orthogonal Polynomials and Theory of Soliton (統計物理学の展開と応用--多様性の中の類似性(研究会報告)) , 1993 .

[17]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[18]  I. J. Good,et al.  Short Proof of a Conjecture by Dyson , 1970 .

[19]  Vladimir E. Korepin,et al.  Calculation of norms of Bethe wave functions , 1982 .

[20]  Anders Thorup,et al.  On Giambelli's theorem on complete correlations , 1989 .

[21]  David P. Robbins,et al.  The Story of 1, 2, 7, 42, 429, 7436, … , 1991 .

[22]  Donald E. Knuth,et al.  Overlapping Pfaffians , 1995, Electron. J. Comb..

[23]  Howard Rumsey,et al.  Determinants and alternating sign matrices , 1986 .

[24]  Greg Kuperberg,et al.  Another proof of the alternating sign matrix conjecture , 1996 .

[25]  David P. Robbins,et al.  Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.

[26]  David M. Bressoud,et al.  How the Alternating Sign Matrix Conjecture Was Solved , 1999 .

[27]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[28]  E. Lieb Exact Solution of the Problem of the Entropy of Two-Dimensional Ice , 1967 .

[29]  A. G. Izergin,et al.  Partition function of the six-vertex model in a finite volume , 1987 .

[30]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[31]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .