Robust Parameter Estimation in Computer Vision

Estimation techniques in computer vision applications must estimate accurate model parameters despite small-scale noise in the data, occasional large-scale measurement errors (outliers), and measurements from multiple populations in the same data set. Increasingly, robust estimation techniques, some borrowed from the statistics literature and others described in the computer vision literature, have been used in solving these parameter estimation problems. Ideally, these techniques should effectively ignore the outliers and measurements from other populations, treating them as outliers, when estimating the parameters of a single population. Two frequently used techniques are least-median of squares (LMS) [P. J. Rousseeuw, {J. Amer. Statist. Assoc., 79 (1984), pp. 871--880] and M-estimators [Robust Statistics: The Approach Based on Influence Functions, F. R. Hampel et al., John Wiley, 1986; Robust Statistics, P. J. Huber, John Wiley, 1981]. LMS handles large fractions of outliers, up to the theoretical limit of 50% for estimators invariant to affine changes to the data, but has low statistical efficiency. M-estimators have higher statistical efficiency but tolerate much lower percentages of outliers unless properly initialized. While robust estimators have been used in a variety of computer vision applications, three are considered here. In analysis of range images---images containing depth or X, Y, Z measurements at each pixel instead of intensity measurements---robust estimators have been used successfully to estimate surface model parameters in small image regions. In stereo and motion analysis, they have been used to estimate parameters of what is called the ''fundamental matrix,'' which characterizes the relative imaging geometry of two cameras imaging the same scene. Recently, robust estimators have been applied to estimating a quadratic image-to-image transformation model necessary to create a composite, ''mosaic image'' from a series of images of the human retina. In each case, a straightforward application of standard robust estimators is insufficient, and carefully developed extensions are used to solve the problem.

[1]  W. Hays Statistical theory. , 1968, Annual review of psychology.

[2]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[3]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[4]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[5]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[6]  Ray A. Jarvis,et al.  A Perspective on Range Finding Techniques for Computer Vision , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[8]  Ramesh C. Jain,et al.  Three-dimensional object recognition , 1985, CSUR.

[9]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[10]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[11]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[12]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[13]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[14]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[15]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[16]  J. Steele,et al.  Time- and Space-Efficient Algorithms for Least Median of Squares Regression , 1987 .

[17]  J. Aggarwal,et al.  Motion Understanding: Robot and Human Vision , 1988 .

[18]  Paul J. Besl,et al.  Surfaces in Range Image Understanding , 1988, Springer Series in Perception Engineering.

[19]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  David Nitzan,et al.  Three-Dimensional Vision Structure for Robot Applications , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Brian G. Schunck,et al.  Image Flow: Fundamentals and Algorithms , 1988 .

[23]  R. Hingorani,et al.  OBJECT TRACKING WITH A MOVING CAMERA An Application of Dynaiiiic Motion Analysis , 1989 .

[24]  H. Edelsbrunner,et al.  Computing Least Median of Squares Regression Lines and Guided Topological Sweep , 1990 .

[25]  Amlan Kundu Robust edge detection , 1990, Pattern Recognit..

[26]  Gabriel Taubin,et al.  Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Kim L. Boyer,et al.  Performance evaluation of a class of M-estimators for surface parameter estimation in noisy range data , 1992, Defense, Security, and Sensing.

[29]  Brian G. Schunck,et al.  A Two-Stage Algorithm for Discontinuity-Preserving Surface Reconstruction , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Philip H. S. Torr,et al.  Statistical detection of independent movement from a moving camera , 1993, Image Vis. Comput..

[31]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[32]  Kim L. Boyer,et al.  Performance evaluation of a class of M-estimators for surface parameter estimation in noisy range data , 1993, IEEE Trans. Robotics Autom..

[33]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[34]  Edward H. Adelson,et al.  Layered representation for motion analysis , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  M. Levine,et al.  Extracting geometric primitives , 1993 .

[36]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[37]  Kim L. Boyer,et al.  The Robust Sequential Estimator: A General Approach and its Application to Surface Organization in Range Data , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Allen R. Hanson,et al.  Robust methods for estimating pose and a sensitivity analysis , 1994 .

[39]  Franc Solina,et al.  A Direct Recovery of Superquadric Models in Range Images Using Recover-and-Select Paradigm , 1994, ECCV.

[40]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[41]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[42]  P. Anandan,et al.  Mosaic based representations of video sequences and their applications , 1995, Proceedings of IEEE International Conference on Computer Vision.

[43]  Charlie Rothwell Object Recognition through Invariant Indexing , 1995 .

[44]  O. Faugeras Stratification of three-dimensional vision: projective, affine, and metric representations , 1995 .

[45]  Charles V. Stewart,et al.  MINPRAN: A New Robust Estimator for Computer Vision , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[47]  Alex Pentland,et al.  Cooperative Robust Estimation Using Layers of Support , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Harpreet S. Sawhney,et al.  Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding , 1995, Proceedings of IEEE International Conference on Computer Vision.

[49]  James V. Miller,et al.  MUSE: robust surface fitting using unbiased scale estimates , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Stan Z. Li,et al.  Robustizing robust M-estimation using deterministic annealing , 1996, Pattern Recognit..

[51]  Michael J. Black,et al.  Skin and bones: multi-layer, locally affine, optical flow and regularization with transparency , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  Richard Szeliski,et al.  Video mosaics for virtual environments , 1996, IEEE Computer Graphics and Applications.

[54]  Michael J. Black,et al.  On the unification of line processes , 1996 .

[55]  Philip H. S. Torr An assessment of information criteria for motion model selection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[56]  Yair Weiss,et al.  Smoothness in layers: Motion segmentation using nonparametric mixture estimation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[57]  P. Rousseeuw 5 Introduction to positive-breakdown methods , 1997 .

[58]  Charles V. Stewart,et al.  Bias in robust estimation caused by discontinuities and multiple structures , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Azriel Rosenfeld,et al.  Robust detection of straight and circular road segments in noisy aerial images' , 1997, Pattern Recognit..

[60]  Cordelia Schmid,et al.  Comparing and evaluating interest points , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[61]  Charles V. Stewart,et al.  Model selection and surface merging in reconstruction algorithms , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[62]  Andrew Zisserman,et al.  Concerning Bayesian Motion Segmentation, Model, Averaging, Matching and the Trifocal Tensor , 1998, ECCV.

[63]  James V. Miller Regression-based surface reconstruction: coping with noise, outliers, and discontinuities , 1998 .

[64]  B. Roysam,et al.  Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination , 1998, IEEE Transactions on Biomedical Engineering.

[65]  Richard I. Hartley,et al.  Minimizing algebraic error in geometric estimation problems , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[66]  Rae-Hong Park,et al.  Robust Adaptive Segmentation of Range Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Hong Shen,et al.  Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms , 1999, IEEE Transactions on Information Technology in Biomedicine.

[68]  A. G. Amitha Perera,et al.  Estimating model parameters and boundaries by minimizing a joint, robust objective function , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).