Analysis of linear difference schemes in the sparse grid combination technique

Sparse grids are tailored to the approximation of smooth high-dimensional functions. On a $d$-dimensional tensor product space, the number of grid points is $N = \mathcal O(h^{-1} |\log h|^{d-1})$, where $h$ is a mesh parameter. The so-called combination technique, based on hierarchical decomposition and extrapolation, requires specific multivariate error expansions of the discretisation error on Cartesian grids to hold. We derive such error expansions for linear difference schemes through an error correction technique of semi-discretisations. We obtain overall error formulae of the type $\epsilon = \mathcal{O} (h^p |\log h|^{d-1})$ and analyse the convergence, with its dependence on dimension and smoothness, by examples of linear elliptic and parabolic problems, with numerical illustrations in up to eight dimensions.

[1]  Hans-Joachim Bungartz,et al.  Pointwise Convergence Of The Combination Technique For Laplace's Equation , 1994 .

[2]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[3]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[4]  Michael Griebel,et al.  The efficient solution of fluid dynamics problems by the combination technique , 1995, Forschungsberichte, TU Munich.

[5]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[6]  Gabriel Wittum,et al.  Efficient Hierarchical Approximation of High-Dimensional Option Pricing Problems , 2007, SIAM J. Sci. Comput..

[7]  M. Giles,et al.  Analysis of Adjoint Error Correction for Superconvergent Functional Estimates , 2001 .

[8]  Thomas Gerstner,et al.  Efficient deterministic numerical simulation of stochastic asset-liability management models in life insurance , 2009 .

[9]  Cornelis W. Oosterlee,et al.  On coordinate transformation and grid stretching for sparse grid pricing of basket options , 2008 .

[10]  M. Hegland Adaptive sparse grids , 2003 .

[11]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[12]  Christoph Pflaum,et al.  Convergence of the Combination Technique for Second-Order Elliptic Differential Equations , 1997 .

[13]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[14]  Pál-Andrej Nitsche,et al.  Sparse Approximation of Singularity Functions , 2003 .

[15]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[16]  Christoph Schwab,et al.  Sparse Wavelet Methods for Option Pricing under Stochastic Volatility , 2004 .

[17]  Hans-Joachim Bungartz,et al.  Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung , 1992 .

[18]  M. Griebel,et al.  On the computation of the eigenproblems of hydrogen helium in strong magnetic and electric fields with the sparse grid combination technique , 2000 .