Quantitative Tverberg, Helly, & Carathéodory theorems
暂无分享,去创建一个
[1] Jesús A. De Loera,et al. A quantitative Doignon-Bell-Scarf theorem , 2014, Comb..
[2] Márton Naszódi. Proof of a Conjecture of Bárány, Katchalski and Pach , 2016, Discret. Comput. Geom..
[3] J. D. Loera,et al. Helly numbers of subsets of ℝᵈ and sampling techniques in optimization , 2015 .
[4] Florian Frick,et al. Counterexamples to the topological Tverberg conjecture , 2015 .
[5] Jesús A. De Loera,et al. Integer Programs with Prescribed Number of Solutions and a Weighted Version of Doignon-Bell-Scarf's Theorem , 2014, IPCO.
[6] Pablo Soberón. Equal coefficients and tolerance in coloured tverberg partitions , 2013, SoCG '13.
[7] Gennadiy Averkov,et al. On Maximal S-Free Sets and the Helly Number for the Family of S-Convex Sets , 2011, SIAM J. Discret. Math..
[8] A. Barvinok. Thrifty approximations of convex bodies by polytopes , 2012, 1206.3993.
[9] Günter M. Ziegler. 3N Colored Points in a Plane , 2011 .
[10] Robert Weismantel,et al. Transversal numbers over subsets of linear spaces , 2010, 1002.0948.
[11] Benjamin Matschke,et al. Optimal bounds for a colorful Tverberg--Vrecica type problem , 2009, 0911.2692.
[12] Jean-Pierre Roudneff. New cases of Reay's conjecture on partitions of points into simplices with k-dimensional intersection , 2009, Eur. J. Comb..
[13] Pavle V. M. Blagojevi'c,et al. Optimal bounds for the colored Tverberg problem , 2009, 0910.4987.
[14] Ruy Fabila Monroy,et al. Very Colorful Theorems , 2009, Discret. Comput. Geom..
[15] E. Bronstein. Approximation of convex sets by polytopes , 2008 .
[16] Rephael Wenger,et al. Helly-Type Theorems and Geometric Transversals , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[17] I. Bárány. LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .
[18] Jiří Matoušek,et al. A fractional Helly theorem for convex lattice sets , 2003 .
[19] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[20] Jean-Pierre Roudneff,et al. Partitions of Points into Simplices withk-dimensional Intersection. Part I: The Conic Tverberg's Theorem , 2001, Eur. J. Comb..
[21] Shlomo Reisner,et al. Dropping a vertex or a facet from a convex polytope , 2001 .
[22] Jürgen Eckhoff,et al. The partition conjecture , 2000, Discrete Mathematics.
[23] Imre Bárány,et al. Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..
[24] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[25] Y. Gordon,et al. Umbrellas and Polytopal Approximation of the Euclidean Ball , 1996, math/9603208.
[26] Y. Gordon,et al. Constructing a polytope to approximate a convex body , 1995 .
[27] Kenneth L. Clarkson,et al. Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.
[28] Van de M. L. J. Vel. Theory of convex structures , 1993 .
[29] J. Eckhoff. Helly, Radon, and Carathéodory Type Theorems , 1993 .
[30] P. Gruber. Aspects of Approximation of Convex Bodies , 1993 .
[31] K. S. Sarkaria. Tverberg’s theorem via number fields , 1992 .
[32] I. Bárány,et al. A Colored Version of Tverberg's Theorem , 1992 .
[33] Shmuel Onn,et al. On the Geometry and Computational Complexity of Radon Partitions in the Integer Lattice , 1991, SIAM J. Discret. Math..
[34] Stanley Rabinowitz,et al. A Theorem about Collinear Lattice Points , 1989 .
[35] J. Pach,et al. Quantitative Helly-type theorems , 1982 .
[36] Imre Bárány,et al. A generalization of carathéodory's theorem , 1982, Discret. Math..
[37] Helge Tverberg. A generalization of Radon's theorem II , 1981, Bulletin of the Australian Mathematical Society.
[38] Gerard Sierksma,et al. A Tverberg-type generalization of the Helly number of a convexity space , 1981 .
[39] Robert E. Jamison-Waldner. PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .
[40] A. J. Hoffman. BINDING CONSTRAINTS AND HELLY NUMBERS , 1979 .
[41] H. Scarf. An observation on the structure of production sets with indivisibilities. , 1977, Proceedings of the National Academy of Sciences of the United States of America.
[42] David E. Bell. A Theorem Concerning the Integer Lattice , 1977 .
[43] E. M. Bronshteyn,et al. The approximation of convex sets by polyhedra , 1975 .
[44] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .
[45] Jean-Paul Doignon,et al. Convexity in cristallographical lattices , 1973 .
[46] D. C. Kay,et al. Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers , 1971 .
[47] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[48] V. Klee,et al. Helly's theorem and its relatives , 1963 .
[49] K. Strubecker. Affine Differentialgeometrie , 1936 .
[50] E. Helly,et al. Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .
[51] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkte. , 1923 .
[52] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[53] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. , 1913 .
[54] C. Carathéodory. Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .