Detection-device-independent verification of nonclassical light

The efficient certification of nonclassical effects of light forms the basis for applications in optical quantum technologies. We derive general correlation conditions for the verification of nonclassical light based on multiplexed detection. The obtained nonclassicality criteria are valid for imperfectly-balanced multiplexing scenarios with on-off detectors and do not require any knowledge about the detector system. In this sense they are fully independent of the detector system. In our experiment, we study light emitted by clusters of single-photon emitters, whose photon number may exceed the number of detection channels. Even under such conditions, our criteria certify nonclassicality with high statistical significance.

[1]  N. Kazarinoff Analytic Inequalities , 2021, Inequalities in Analysis and Probability.

[2]  Christine Silberhorn,et al.  A high dynamic range optical detector for measuring single photons and bright light. , 2018, Optics express.

[3]  R. Filip,et al.  Multiphoton nonclassical light from clusters of single-photon emitters , 2018, New Journal of Physics.

[4]  C Silberhorn,et al.  Incomplete Detection of Nonclassical Phase-Space Distributions. , 2017, Physical review letters.

[5]  R. Filip,et al.  Nonclassical Light from Large Ensembles of Trapped Ions. , 2017, Physical review letters.

[6]  C. Silberhorn,et al.  Probing free-space quantum channels with laboratory-based experiments , 2017, 1702.04127.

[7]  W. Clements,et al.  Detector-Independent Verification of Quantum Light. , 2017, Physical review letters.

[8]  W. Clements,et al.  Identification of nonclassical properties of light with multiplexing layouts. , 2017, Physical review. A.

[9]  Christine Silberhorn,et al.  Direct calibration of click-counting detectors , 2016, 1611.04779.

[10]  Jeremy L O'Brien,et al.  Towards practical quantum metrology with photon counting , 2016, npj Quantum Information.

[11]  Carsten Rockstuhl,et al.  Sub-Poisson-binomial light , 2016, 1606.04826.

[12]  I. Walmsley,et al.  Quantum Correlations from the Conditional Statistics of Incomplete Data. , 2016, Physical review letters.

[13]  Radim Filip,et al.  Nonclassical light from a large number of independent single-photon emitters , 2016, Scientific Reports.

[14]  Werner Vogel,et al.  Harnessing click detectors for the genuine characterization of light states , 2016, Scientific Reports.

[15]  M. Barbieri,et al.  Metrology with Unknown Detectors. , 2015, Physical review letters.

[16]  J. Sperling,et al.  Homodyne detection with on-off detector systems , 2015, 1508.03142.

[17]  E. Giacobino,et al.  Exciton Fine Structure of CdSe/CdS Nanocrystals Determined by Polarization Microscopy at Room Temperature. , 2015, ACS nano.

[18]  C. Silberhorn,et al.  Uncovering Quantum Correlations with Time-Multiplexed Click Detection. , 2015, Physical review letters.

[19]  Elham Kashefi,et al.  Robustness and device independence of verifiable blind quantum computing , 2015, 1502.02571.

[20]  Jan Sperling,et al.  Nonclassicality phase-space functions: more insight with fewer detectors. , 2014, Physical review letters.

[21]  Rob Thew,et al.  Detector-device-independent quantum key distribution , 2014, 1410.1850.

[22]  Vezzoli,et al.  Effect of charging on CdSe/CdS dot-in-rods single-photon emission , 2014, 1502.01740.

[23]  J. Sperling,et al.  Unified quantification of nonclassicality and entanglement , 2014, 1401.5222.

[24]  M. Chekhova,et al.  Photon correlations for colloidal nanocrystals and their clusters. , 2013, Optics letters.

[25]  R. Filip,et al.  Hierarchy of feasible nonclassicality criteria for sources of photons , 2013 .

[26]  G. Agarwal,et al.  Correlation measurements with on-off detectors , 2013, 1309.3058.

[27]  Geoff J. Pryde,et al.  Practical Quantum Metrology , 2013, 1307.4673.

[28]  Marco Barbieri,et al.  Direct observation of sub-binomial light , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[29]  Nicolas Gisin,et al.  Measurement-device-independent entanglement witnesses for all entangled quantum states. , 2012, Physical review letters.

[30]  G. Agarwal,et al.  Sub-binomial light. , 2012, Physical review letters.

[31]  G. S. Agarwal,et al.  True photocounting statistics of multiple on-off detectors , 2012, 1202.5106.

[32]  Ferruccio Pisanello,et al.  Room temperature-dipolelike single photon source with a colloidal dot-in-rod , 2010 .

[33]  W. Vogel,et al.  Experimental determination of a nonclassical Glauber-Sudarshan P function , 2008, 0804.1016.

[34]  S. Polyakov,et al.  Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.

[36]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[37]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[38]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .

[39]  A. Migdall,et al.  Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array , 2006, quant-ph/0601102.

[40]  M. Bellini,et al.  Quantum-to-Classical Transition with Single-Photon-Added Coherent States of Light , 2004, Science.

[41]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[42]  I. Walmsley,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[43]  M. J. Fitch,et al.  Photon-number resolution using time-multiplexed single-photon detectors , 2003, quant-ph/0305193.

[44]  J. Peřina,et al.  Multiple-photon resolving fiber-loop detector , 2003, quant-ph/0303032.

[45]  I. Walmsley,et al.  Photon counting with a loop detector. , 2002, Optics letters.

[46]  P. Kok,et al.  Detection devices in entanglement-based optical state preparation , 1999, quant-ph/9910084.

[47]  Paul,et al.  Photon chopping: New way to measure the quantum state of light. , 1996, Physical review letters.

[48]  Agarwal,et al.  Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[49]  L. Mandel,et al.  Sub-Poissonian photon statistics in resonance fluorescence. , 1979, Optics letters.

[50]  M. O. Scully,et al.  Quantum theory of an optical maser. III - Theory of photoelectron counting statistics. , 1969 .

[51]  R. Glauber,et al.  Correlation Functions for Coherent Fields , 1965 .

[52]  P. Kelley,et al.  Theory of Electromagnetic Field Measurement and Photoelectron Counting , 1964 .

[53]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[54]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[55]  W. Marsden I and J , 2012 .

[56]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[57]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[58]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .