Evaluation and tuning of robust PID controllers

Based on a general controller evaluation method, taking both performance and robustness in different frequency regions into account, an analytical PID design method is presented. It is related to the well known and often used lambda tuning approach, which is based on internal model control (IMC) for a specific second-order non-minimum phase plant model. The analytical method introduced in this paper includes two tuning parameters, one that guarantees a specified stability margin for the given model, and one that is also able to adjust the control activity to a desired level. The suggested method, called robust IMC, gives the user the important freedom to control both mid- and high-frequency robustness. An extended evaluation procedure also illustrates how efficiently PI and PID controllers including a Smith predictor (SP) can control time delayed plants. More specifically, it is shown to be more profitable to provide a PI controller with derivative action than with a SP for plants with long time delays.

[1]  Tore Hägglund,et al.  A frequency domain method for automatic tuning of simple feedback loops , 1984 .

[2]  Evaluation and tuning of PID controllers , 2000 .

[3]  Birgitta Kristiansson,et al.  From PI to 8, Control in a Unified Framework , 2000 .

[4]  Helene Panagopoulos,et al.  PID Controller Design , 1998 .

[5]  Chang Chieh Hang,et al.  Getting more phase margin and performance out of PID controllers , 1999, Autom..

[6]  Helene Panagopoulos,et al.  PID Control, Design, Extension, Application , 2000 .

[7]  Tore Hägglund,et al.  New Tuning Methods for PID Controllers , 1995 .

[8]  A. Leva,et al.  IMC-based synthesis of the feedback block of ISA-PID regulators , 2001, 2001 European Control Conference (ECC).

[9]  Moonyong Lee,et al.  Robust PID tuning for Smith predictor in the presence of model uncertainty , 1999 .

[10]  Youxian Sun,et al.  Two Degree-of-Freedom Smith Predictor for Processes with Time Delay , 1998, Autom..

[11]  M Mellquist,et al.  Derivative Filtering Issues for Industrial PID Controllers. , 1997 .

[12]  Bengt Lennartson,et al.  Near Optimal Tuning Rules for PI and PID Controllers , 2000 .

[13]  F. G. Greg Shinskey,et al.  Process Control Systems: Application, Design and Tuning , 1990 .

[14]  K.J. Astrom,et al.  Design of PID controllers based on constrained optimization , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[15]  Bengt Lennartson,et al.  Robust PI and PID controllers including Smith predictor structure , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[16]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  B. De Moor,et al.  Optimal PID control of a chemical batch reactor , 1999 .

[18]  Dale E. Seborg,et al.  A comparison of the Smith predictor and conventional feedback control , 1976 .

[19]  R. Ferreiro Garcia,et al.  A Complement to Autotuning Methods on PID Controllers , 2000 .

[20]  B. Lennartson,et al.  Robust tuning of PI and PID controllers: using derivative action despite sensor noise , 2006, IEEE Control Systems.

[21]  Bengt Lennartson,et al.  Evaluation and simple tuning of PID controllers with high-frequency robustness , 2006 .

[22]  Tore Hägglund,et al.  Benchmark systems for PID control , 2000 .

[23]  Karl J. Åström,et al.  Limitations on control system performance , 1997, 1997 European Control Conference (ECC).

[24]  Ioan Doré Landau,et al.  The autocalibration of PI controllers based on two frequency measurements , 1995 .

[25]  Karl Johan Åström,et al.  Dominant Pole Design - A Unified View of PID Controller Tuning , 1992 .

[26]  Keith Glover,et al.  A loop shaping design procedure , 1990 .

[27]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .

[28]  Zoran Gajic,et al.  A Reference Guide to PID Controllers in the Nineties , 2000 .

[29]  Tor Steinar Schei,et al.  Automatic tuning of PID controllers based on transfer function estimation , 1994, Autom..

[30]  N. Munro,et al.  PID controllers: recent tuning methods and design to specification , 2002 .

[31]  J. Crowe,et al.  Towards autonomous PI control satisfying classical robustness specifications , 2002 .

[32]  Fernando Morilla,et al.  Methodologies for the Tuning of PID Controllers in the Frequency Domain , 2000 .

[33]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[34]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[35]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[36]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[37]  Per Persson,et al.  Towards Autonomous PID Control , 1992 .

[38]  Marcelo Embiruçu,et al.  Tuning of PID Controllers: An Optimization-Based Method , 2000 .

[39]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[40]  Somanath Majhi,et al.  Obtaining controller parameters for a new Smith predictor using autotuning , 2000, Autom..

[41]  G. Stein,et al.  The LQG/LTR procedure for multivariable feedback control design , 1987 .

[42]  Bengt Lennartson,et al.  Robust and optimal tuning of PI and PID controllers , 2002 .

[43]  Chang-Chieh Hang,et al.  Quantitative robust stability analysis and PID controller design , 2002 .

[44]  Raymond Gorez,et al.  Nonmodel-Based Explicit Design Relations for PID Controllers , 2000 .

[45]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[46]  Franjo Jović,et al.  Process Control Systems , 1986 .

[47]  F. L. Pagola,et al.  Control Design for PID Controllers Auto-Tuning Based on Improved Identification , 2000 .

[48]  Ramon Vilanova,et al.  A General Approach to PID Optimal Design: Achievable Designs and Generation of Stabilizing Controllers , 2000 .

[49]  Tore Hägglund,et al.  The future of PID control , 2000 .

[50]  Stefan F. Graebe,et al.  Analytical PID parameter expressions for higher order systems , 1999, Autom..

[51]  In-Beum Lee,et al.  Enhanced relay feedback method , 1997 .

[52]  John Ringwood,et al.  The control of a process with time delay by using a modified Smith predictor compensator , 1996 .

[53]  Alf Isaksson,et al.  Derivative filter is an integral part of PID design , 2002 .

[54]  Bengt Lennartson,et al.  Optimal PID Controllers including Rolloff and Smith Predictor Structure , 1999 .

[55]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[56]  Ya-Gang Wang,et al.  Optimal tuning for PI controller , 2000, Autom..

[57]  Dennis S. Bernstein,et al.  H-optimal synthesis of controllers with relative degree two, , 1999, Autom..

[58]  W. Ho,et al.  PID tuning for unstable processes based on gain and phase-margin specifications , 1998 .

[59]  Bengt Lennartson,et al.  Pass band and high frequency robustness for PID control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[60]  Eugenio J. Tacconi,et al.  Complementary rules to Ziegler and Nichols' rules for a regulating and tracking controller , 1989 .

[61]  Tore Hägglund,et al.  Robust Automatic Tuning of an Industrial PI Controller for Dead-Time Systems , 2000 .

[62]  Cheng-Ching Yu,et al.  Autotuning of PID Controllers: Relay Feedback Approach , 1999 .

[63]  Ioan Doré Landau,et al.  A method for the auto-calibration of PID controllers , 1995, Autom..

[64]  S. Daley,et al.  Optimal-tuning PID controller design in the frequency domain with application to a rotary hydraulic system , 1999 .

[65]  Ioan Doré Landau,et al.  Combined pole placement/sensitivity function shaping method using convex optimization criteria , 1997, 1997 European Control Conference (ECC).

[66]  Somanath Majhi,et al.  Automatic tuning of the modified Smith predictor controllers , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[67]  O Smith,et al.  CLOSER CONTROL OF LOOPS WITH DEAD TIME , 1957 .

[68]  Alberto Leva Automatic Tuning of PID Regulators in Presence of Model Perturbations near the Desired Closed-Loop Cutoff , 1997, Eur. J. Control.