3D B-Rep meshing for real-time data-based geometric parametric analysis

This paper presents an effective framework to automatically construct 3D quadrilateral meshes of complicated geometry and arbitrary topology adapted for parametric studies. The input is a triangulation of the solid 3D model’s boundary provided from B-Rep CAD models or scanned geometry. The triangulated mesh is decomposed into a set of cuboids in two steps: pants decomposition and cuboid decomposition. This workflow includes an integration of a geometry-feature-aware pants-to-cuboids decomposition algorithm. This set of cuboids perfectly replicates the input surface topology. Using aligned global parameterization, patches are re-positioned on the surface in a way to achieve low overall distortion, and alignment to principal curvature directions and sharp features. Based on the cuboid decomposition and global parameterization, a 3D quadrilateral mesh is extracted. For different parametric instances with the same topology but different geometries, the MEG-IsoQuad method allows to have the same representation: isotopological meshes holding the same connectivity where each point on a mesh has an analogous one into all other meshes. Faithful 3D numerical charts of parametric geometries are then built using standard data-based techniques. Geometries are then evaluated in real-time. The efficiency and the robustness of the proposed approach are illustrated through a few parametric examples.

[1]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[2]  David Cohen-Steiner,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, ACM Trans. Graph..

[3]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[4]  Wenping Wang,et al.  Feature-preserving T-mesh construction using skeleton-based polycubes , 2015, Comput. Aided Des..

[5]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[6]  Keenan Crane,et al.  Trivial Connections on Discrete Surfaces , 2010, Comput. Graph. Forum.

[7]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[8]  Michel Rochette,et al.  Isogeometric analysis-suitable trivariate NURBS models from standard B-Rep models , 2016 .

[9]  Mustafa Hajij,et al.  Segmenting a surface mesh into pants using Morse theory , 2016, Graph. Model..

[10]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[11]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, ACM Trans. Graph..

[12]  Tristan Maquart,et al.  Trivariate models generation from unstructured surface manifolds for isogeometric analysis : Application to reduced order modeling with geometric parameters , 2019 .

[13]  Keenan Crane Discrete connections for geometry processing , 2010 .

[14]  Jian Sun,et al.  Computing geometry-aware handle and tunnel loops in 3D models , 2008, SIGGRAPH 2008.

[15]  Christophe Geuzaine,et al.  Computing cross fields - A PDE approach based on the Ginzburg-Landau theory , 2017, 1706.01344.

[16]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[17]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[18]  T. Dey,et al.  Approximating cycles in a shortest basis of the first homology group from point data , 2011 .

[19]  H. A. Akhras Automatic isogeometric analysis suitable trivariate models generation : Application to reduced order modeling , 2016 .

[20]  Franck Ledoux,et al.  A PDE Based Approach to Multidomain Partitioning and Quadrilateral Meshing , 2012, IMR.

[21]  Xin Li,et al.  Searching geometry-aware pants decomposition in different isotopy classes , 2014 .

[22]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, SIGGRAPH 2010.

[23]  Francis Lazarus,et al.  Optimal pants decompositions and shortest homotopic cycles on an orientable surface , 2003, JACM.

[24]  Marco Viceconti,et al.  Comprehensive evaluation of PCA-based finite element modelling of the human femur. , 2014, Medical engineering & physics.

[25]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[26]  Michel Rochette,et al.  3D volumetric isotopological meshing for finite element and isogeometric based reduced order modeling , 2020 .

[27]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[28]  Amaury Courard,et al.  PGD-Abaques virtuels pour l'optimisation géométrique des structures , 2016 .

[29]  W. T. Tutte How to Draw a Graph , 1963 .

[30]  Siamak Niroomandi,et al.  Real-time deformable models of non-linear tissues by model reduction techniques , 2008, Comput. Methods Programs Biomed..

[31]  Anthony Gravouil,et al.  A global model reduction approach for 3D fatigue crack growth with confined plasticity , 2011 .

[32]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[33]  Hong Qin,et al.  Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes , 2013, IEEE Transactions on Visualization and Computer Graphics.

[34]  Leila Schneps,et al.  On the Teichmüller tower of mapping class groups , 2000 .

[35]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[36]  Najah Hraiech Morphing de maillage et indexation de forme pour la modélisation du fémur humain , 2010 .

[37]  R. Ho Algebraic Topology , 2022 .

[38]  A. Gravouil,et al.  Towards an automatic isogeometric analysis suitable trivariate models generation—Application to geometric parametric analysis , 2017 .

[39]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[40]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[41]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[42]  Wei Zeng,et al.  Generalized Koebe's method for conformal mapping multiply connected domains , 2009, Symposium on Solid and Physical Modeling.

[43]  Michel Rochette,et al.  A note on topological properties of volumes constructed from surfaces , 2019 .

[44]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[45]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, ACM Trans. Graph..

[46]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[47]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[48]  Yohan Payan,et al.  Personalized modeling for real-time pressure ulcer prevention in sitting posture. , 2018, Journal of tissue viability.

[49]  Ye Lu Construction d’abaques numériques dédiés aux études paramétriques du procédé de soudage par des méthodes de réduction de modèles espace-temps , 2017 .

[50]  N. Blal,et al.  Adaptive sparse grid based HOPGD: Toward a nonintrusive strategy for constructing space‐time welding computational vademecum , 2018 .