A simple strategy for varying the restart parameter in GMRES(m)

When solving a system of linear equations with the restarted GMRES method, a fixed restart parameter is typically chosen. We present numerical experiments that demonstrate the beneficial effects of changing the value of the restart parameter in each restart cycle on the total time to solution. We propose a simple strategy for varying the restart parameter and provide some heuristic explanations for its effectiveness based on analysis of the symmetric case.

[1]  Elizabeth R. Jessup,et al.  On improving the performance of the linear solver restarted gmres , 2003 .

[2]  Mark Embree,et al.  The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..

[3]  Ilya Zavorin Spectral factorization of the Krylov matrix and convergence of GMRES , 2002 .

[4]  V. L. R. Lopes,et al.  Some applications for Newton-Krylov methods with a safeguard for GMRES ( m ) ∗ , 2006 .

[5]  Azeddine Essai Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.

[6]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[7]  Takashi Nodera,et al.  Gmres(m) Algorithm With Changing The Restart Cycle Adaptively , 2000 .

[8]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[9]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[10]  Linjie Zhang,et al.  A new adaptive restart for GMRES($m$) method , 2005 .

[11]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[12]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[13]  Ilse C. F. Ipsen Expressions and Bounds for the GMRES Residual , 2000, Bit Numerical Mathematics.

[14]  Sosonkina Maria,et al.  A New Adaptive GMRES Algorithm for Achieving High Accuracy , 1996 .

[15]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[16]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[17]  Elizabeth R. Jessup,et al.  A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..

[18]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[19]  Márcia A. Gomes-Ruggiero,et al.  A safeguard approach to detect stagnation of GMRES(m) with applications in Newton-Krylov methods , 2008 .

[20]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[21]  Peter Witt,et al.  University of Colorado at Denver and Health Sciences Center HSC FACULTY ASSEMBLY , 2005 .

[22]  Valeria Simoncini,et al.  A new variant of restarted GMRES , 1997, Numer. Linear Algebra Appl..