Multi-trait genetic analysis identifies auto-immune loci associated with cutaneous melanoma.

[1]  S. Schlesinger,et al.  25-Hydroxyvitamin D status, vitamin D intake, and skin cancer risk: a systematic review and dose–response meta-analysis of prospective studies , 2020, Scientific Reports.

[2]  A. Green,et al.  Melanoma Risk in Patients Treated With Biologic Therapy for Common Inflammatory Diseases: A Systematic Review and Meta-analysis. , 2020, JAMA dermatology.

[3]  Blair H. Smith,et al.  Genome-wide association meta-analyses combining multiple risk phenotypes provides insights into the genetic architecture of cutaneous melanoma susceptibility , 2020, Nature Genetics.

[4]  F. Montastruc,et al.  Abatacept in rheumatoid arthritis and the risk of cancer: a world observational post-marketing study. , 2019, Rheumatology.

[5]  A. Toland,et al.  Genome‐wide association studies and polygenic risk scores for skin cancer: clinically useful yet? , 2019, The British journal of dermatology.

[6]  W. Pavan,et al.  The Genetics of Human Skin and Hair Pigmentation. , 2019, Annual review of genomics and human genetics.

[7]  J. Barrett,et al.  Is there a causal relationship between vitamin D and melanoma risk? A Mendelian randomization study , 2019, The British journal of dermatology.

[8]  S. MacGregor,et al.  Combined analysis of keratinocyte cancers identifies novel genome-wide loci , 2019, Human molecular genetics.

[9]  R. Sabat,et al.  T cell pathology in skin inflammation , 2019, Seminars in Immunopathology.

[10]  Jonathan P. Beauchamp,et al.  Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences , 2019, Nature Genetics.

[11]  Nilanjan Chatterjee,et al.  Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.

[12]  E. Lazaro,et al.  T Follicular Helper Cells in Autoimmune Disorders , 2018, Front. Immunol..

[13]  Robert M. Maier,et al.  Quantification of genetic components of population differentiation in UK Biobank traits reveals signals of polygenic selection , 2018, bioRxiv.

[14]  D. Posthuma,et al.  Functional mapping and annotation of genetic associations with FUMA , 2017, Nature Communications.

[15]  Lars G Fritsche,et al.  Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.

[16]  David M. Evans,et al.  Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways , 2017, Nature Communications.

[17]  Peter M. Visscher,et al.  Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits , 2016, Scientific Reports.

[18]  Tumaini R. Coker,et al.  Screening for Skin Cancer: US Preventive Services Task Force Recommendation Statement. , 2023, JAMA.

[19]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[20]  D. Whiteman,et al.  Medicare claims data reliably identify treatments for basal cell carcinoma and squamous cell carcinoma: a prospective cohort study , 2016, Australian and New Zealand journal of public health.

[21]  Liangdan Sun,et al.  Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci , 2016, Front. Genet..

[22]  G. Parmigiani,et al.  Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. , 2016, JAMA.

[23]  A. Rademaker,et al.  Co‐existence of psoriasis and melanoma in a large urban academic centre population: a cross‐sectional retrospective study , 2016, Journal of the European Academy of Dermatology and Venereology : JEADV.

[24]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[25]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[26]  A. Spurdle,et al.  Most common 'sporadic' cancers have a significant germline genetic component. , 2014, Human molecular genetics.

[27]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[28]  Jun S. Liu,et al.  Genetics of rheumatoid arthritis contributes to biology and drug discovery , 2013 .

[29]  D. Whiteman,et al.  Cohort profile: the QSkin Sun and Health Study. , 2012, International journal of epidemiology.

[30]  N. Wray,et al.  Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes , 2012, European Journal of Human Genetics.

[31]  W. G. Hill,et al.  Genome partitioning of genetic variation for complex traits using common SNPs , 2011, Nature Genetics.

[32]  C. Chute,et al.  Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium , 2011, Science Translational Medicine.

[33]  Jianxin Shi,et al.  Genome‐wide association studies of pigmentation and skin cancer: a review and meta‐analysis , 2010, Pigment cell & melanoma research.

[34]  Myles G Cockburn,et al.  Increasing burden of melanoma in the United States. , 2009, The Journal of investigative dermatology.

[35]  J. Pritchard,et al.  Linkage disequilibrium in humans: models and data. , 2001, American journal of human genetics.

[36]  P. Visscher,et al.  Publisher Correction: Multi-trait analysis of genome-wide association summary statistics using MTAG , 2019, Nature Genetics.

[37]  P. Boyle,et al.  Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. , 2005, European journal of cancer.