Multiple Face Detection at Different Resolutions for Perceptual User Interfaces

This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.

[1]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  Guerra Artal,et al.  Contribuciones al seguimiento visual precategórico , 2002 .

[3]  Harry Shum,et al.  Statistical Learning of Multi-view Face Detection , 2002, ECCV.

[4]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[5]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[6]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[7]  Andreas Zell,et al.  Detection, tracking, and pursuit of humans with an autonomous mobile robot , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[8]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ioannis Pitas,et al.  A novel method for automatic face segmentation, facial feature extraction and tracking , 1998, Signal Process. Image Commun..

[10]  B. Schiele,et al.  Fast and Robust Face Finding via Local Context , 2003 .

[11]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Matthew Turk,et al.  Computer vision in the interface , 2004, CACM.

[13]  Hans Jørgen Andersen,et al.  Physics-based modelling of human skin colour under mixed illuminants , 2001, Robotics Auton. Syst..

[14]  Josef Kittler,et al.  Audio- and Video-Based Biometric Person Authentication, 5th International Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July 20-22, 2005, Proceedings , 2005, AVBPA.

[15]  Ivar Farup,et al.  A Comparison of Face/Non-face Classifiers , 2001, AVBPA.

[16]  M. Castrillon Santana,et al.  ENCARA: real-time detection of frontal faces , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[17]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[18]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..