Survival of Life on Asteroids, Comets and Other Small Bodies

The ability of living organisms to survive on the smaller bodies in our solar system is examined. The three most significant sterilizing effects include ionizing radiation, prolonged extreme vacuum, and relentless thermal inactivation. Each could be effectively lethal, and even more so in combination, if organisms at some time resided in the surfaces of airless small bodies located near or in the inner solar system. Deep within volatile-rich bodies, certain environments theoretically might provide protection of dormant organisms against these sterilizing factors. Sterility of surface materials to tens or hundreds of centimeters of depth appears inevitable, and to greater depths for bodies which have resided for long periods sunward of about 2 A.U.

[1]  J. Burns,et al.  The Exchange of Impact Ejecta Between Terrestrial Planets , 1996, Science.

[2]  P. Crutzen,et al.  Influence of ancient solar-proton events on the evolution of life , 1976, Nature.

[3]  A. Beckenbach,et al.  Age of bacteria from amber. , 1995, Science.

[4]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[5]  A. Hasegawa,et al.  A theory of long period magnetic pulsations, 3. Local field line oscillations , 1983 .

[6]  A. Wolfendale,et al.  Cosmic rays and and ancient catastrophes , 1977, Nature.

[7]  S. Pääbo,et al.  Amino Acid Racemization and the Preservation of Ancient DNA , 1996, Science.

[8]  Dennis Normile Japanese Mission to Explore Asteroid , 1997, Science.

[9]  H. Melosh,et al.  The Large Crater Origin of SNC Meteorites , 1987, Science.

[10]  Sherwood Chang,et al.  Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorite. , 1993 .

[11]  Veverka,et al.  NEAR's flyby of 253 mathilde: images of a C asteroid , 1997, Science.

[12]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .

[13]  H. Melosh,et al.  The rocky road to panspermia , 1988, Nature.

[14]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[15]  M. Kennedy,et al.  Preservation records of micro-organisms: evidence of the tenacity of life. , 1994, Microbiology.

[16]  G. Horneck Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. , 1995, Planetary and space science.

[17]  V. Mattimore,et al.  Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation , 1996, Journal of bacteriology.

[18]  K. Dose,et al.  Dna stability and survival of bacillus subtilis spores in extreme dryness , 1995, Origins of Life and Evolution of the Biosphere.

[19]  T. Encrenaz,et al.  Infrared sounding of comet Halley from Vega 1 , 1986 .

[20]  R. E. Johnson,et al.  Interactions of planetary magnetospheres with icy satellite surfaces , 1986 .

[21]  C. Emborg,et al.  Studies on post-irradiation DNA degradation in Micrococcus radiodurans, strain R 11 5. , 1973, Radiation research.

[22]  G. Gould,et al.  A simple mathematical model of the thermal death of microorganisms , 1988, Bulletin of mathematical biology.

[23]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[24]  M. Zolensky,et al.  The Kaidun meteorite: Mineralogy of an unusual CM1 lithology , 1996 .

[25]  Gerhard Neukum,et al.  Cratering on Ida , 1996 .

[26]  Sherwood Chang Prebiotic Synthesis in Planetary Environments , 1993 .

[27]  M. Borucki,et al.  Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. , 1995, Science.

[28]  P. Setlow I will survive: protecting and repairing spore DNA , 1992, Journal of bacteriology.

[29]  Harold J. Morowitz,et al.  Annihilation of ecosystems by large asteroid impacts on the early Earth , 1989, Nature.

[30]  P. Sneath,et al.  Longevity of Micro-Organisms , 1962, Nature.

[31]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[32]  M. Hanner,et al.  Thermal emission from the dust coma of comet bowell and a model for the grains , 1986 .

[33]  David J. Stevenson,et al.  Impact frustration of the origin of life , 1988, Nature.

[34]  K. Dose,et al.  DNA-strand breaks limit survival in extreme dryness , 2005, Origins of life and evolution of the biosphere.

[35]  T. Lindahl Instability and decay of the primary structure of DNA , 1993, Nature.

[36]  K. Nishiizumi,et al.  26Al depth profile in Apollo 15 drill core , 1984 .

[37]  Lawrence W. Townsend,et al.  Radiation exposure for manned Mars surface missions , 1990 .

[38]  S. Sandford,et al.  Interplanetary dust particles collected in the stratosphere: observations of atmospheric heating and constraints on their interrelationships and sources. , 1989, Icarus.

[39]  Bruce M. Jakosky,et al.  Infrared observations of Phobos and Deimos from Viking , 1982 .

[40]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[41]  R. Clayton,et al.  Mbosi: An anomalous iron with unique silicate inclusions , 1996 .

[42]  H. Kaplan,et al.  BIOLOGICAL COMPLEXITY AND RADIOSENSITIVITY. RADIATION LETHALITY IN CELLS AND VIRUSES IS CORRELATED WITH NUCLEIC ACID CONTENT, STRUCTURE, AND PLOIDY. , 1964, Science.

[43]  J. Veverka,et al.  Crater densities on the satellites of Mars , 1980 .

[44]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[45]  P. Thomas Ejecta Emplacement on the Martian Satellites , 1998 .

[46]  Richard P. Binzel,et al.  Asteroid rotation rates - Distributions and statistics , 1989 .

[47]  J R Arnold,et al.  Cosmic-Ray Record in Solar System Matter , 1983, Science.

[48]  Dale P. Cruikshank,et al.  Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets , 1988 .

[49]  R. Greenberg,et al.  Asteroidal regoliths: what we do not know , 1989 .

[50]  J. Kiefer,et al.  Biological Radiation Effects , 1990 .