Simple schemes for quantum information processing with W-type entanglement

Simple schemes are proposed for implementing deterministic teleportation, superdense coding, and quantum information splitting with W-type entangled states. The physical realization of these schemes should be much simpler than previous ones due to the assistance of an auxiliary particle. We illustrate the ideas in cavity quantum electrodynamics. The important features of our schemes can also be demonstrated in other systems.

[1]  Guang-Can Guo,et al.  Scheme for the preparation of multiparticle entanglement in cavity QED , 2001, quant-ph/0105123.

[2]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[3]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[4]  Guo-Jian Yang,et al.  Generation and discrimination of a type of four-partite entangled state , 2008 .

[5]  Liu Yimin,et al.  Tripartite Splitting Arbitrary 2-qubit Quantum Information by Using Two Asymmetric W States , 2009 .

[6]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[7]  Shi-Biao Zheng Splitting quantum information via W states , 2006 .

[8]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[9]  He-Shan Song,et al.  Preparation of partially entangled W state and deterministic multi-controlled teleportation , 2008 .

[10]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[11]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[12]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[13]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[14]  Ye Liu,et al.  Scheme to Implement Scheme 1 → M Economical Phase-Covariant Telecloning via Cavity QED , 2008 .

[15]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[16]  Milburn,et al.  Universal teleportation with a twist , 2000, Physical review letters.

[17]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[18]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[19]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[20]  Xin-Wen Wang,et al.  Controlled teleportation against uncooperation of part of supervisors , 2009, Quantum Inf. Process..

[21]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[22]  He-Shan Song,et al.  Quantum secure direct communication scheme using a W state and teleportation , 2006 .

[23]  S Osnaghi,et al.  Coherent control of an atomic collision in a cavity. , 2001, Physical review letters.

[24]  Guo-Jian Yang,et al.  Hybrid economical telecloning of equatorial qubits and generation of multipartite entanglement , 2009 .

[25]  Daowen Qiu,et al.  The states of W-class as shared resources for perfect teleportation and superdense coding , 2007, quant-ph/0701030.

[26]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[27]  Guo-Jian Yang,et al.  Schemes for preparing atomic qubit cluster states in cavity QED , 2008 .

[28]  Ni Dong-Dong,et al.  Benford's Law and β-Decay Half-Lives , 2009 .

[29]  Liu Jun,et al.  Revisiting quantum secure direct communication with W state , 2006 .

[30]  Xin-Wen Wang,et al.  Dense coding and teleportation with one-dimensional cluster states , 2007 .

[31]  Jian Zou,et al.  Scheme for implementing efficient quantum information processing with multiqubit W-class states in cavity QED , 2008 .

[32]  Xiu Xiao-Ming,et al.  Improvement on Quantum Secure Direct Communication with W State in Noisy Channel , 2009 .

[33]  Yi-Min Liu,et al.  TRIPARTITION OF ARBITRARY SINGLE-QUBIT QUANTUM INFORMATION BY USING ASYMMETRIC FOUR-QUBIT W STATE , 2009 .

[34]  M. Brune,et al.  Recording the Birth and Death of a Photon in a Cavity , 2007 .

[35]  Chi-Yee Cheung,et al.  Minimal classical communication and measurement complexity for quantum information splitting , 2008, 0812.4214.

[36]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[37]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[38]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[39]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[40]  Fang Mao-Fa,et al.  One-step discrimination scheme on N-particle Greenberger–Horne–Zeilinger bases , 2007 .

[41]  Xin-Wen Wang,et al.  Method for generating a new class of multipartite entangled state in cavity quantum electrodynamics , 2009 .

[42]  Shi-Biao Zheng,et al.  One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. , 2001, Physical review letters.

[43]  张文海,et al.  Scheme to Implement Scheme 1 → M Economical Phase-Covariant Telecloning via Cavity QED , 2008 .

[44]  Akihisa Tomita,et al.  Teleportation of an unknown state by W state , 2002 .

[45]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.