Semi-parametric regression: Efficiency gains from modeling the nonparametric part

It is widely admitted that structured nonparametric modeling that circumvents the curse of dimensionality is important in nonparametric estimation. In this paper we show that the same holds for semi-parametric estimation. We argue that estimation of the parametric component of a semi-parametric model can be improved essentially when more structure is put into the nonparametric part of the model. We illustrate this for the partially linear model, and investigate efficiency gains when the nonparametric part of the modelhas an additive structure. We present the semi-parametric Fisher information bound for estimating the parametric part of the partially linear additive model and provide semi-parametric efficient estimators for which we use a smooth backfitting technique to deal with the additive nonparametric part. We also present the finite sample performances of the proposed estimators and analyze Boston housing data as an illustration.

[1]  A. Schick On Asymptotically Efficient Estimation in Semiparametric Models , 1986 .

[2]  P. K. Bhattacharya,et al.  Semiparametric inference in a partial linear model , 1997 .

[3]  Anton Schick,et al.  On efficient estimation in regression models , 1993 .

[4]  Byeong Uk Park Efficient estimation in the two-sample semiparametric location-scale models , 1990 .

[5]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[6]  Anton Schick,et al.  Efficient estimation in nonlinear autoregressive time-series models , 1997 .

[7]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[8]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[9]  P. Bickel On Adaptive Estimation , 1982 .

[10]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[11]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[12]  Jack Cuzick,et al.  Efficient Estimates in Semiparametric Additive Regression Models with Unknown Error Distribution , 1992 .

[13]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[14]  Jing Wang,et al.  Efficient and fast spline-backfitted kernel smoothing of additive models , 2009 .

[15]  Arvid Lundervold,et al.  Exploring spatial nonlinearity using additive approximation , 2007 .

[16]  Byeong U. Park A Cross-Validatory Choice of Smoothing Parameter in Adaptive Location Estimation , 1993 .

[17]  Enno Mammen,et al.  Bandwidth selection for smooth backfitting in additive models , 2005, math/0507425.

[18]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[19]  David Ruppert,et al.  Additive Partial Linear Models with Measurement Errors. , 2008, Biometrika.

[20]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[21]  Enno Mammen,et al.  Smooth backfitting in generalized additive models , 2008, 0803.1922.

[22]  David Ruppert,et al.  A Root-n Consistent Backfitting Estimator for Semiparametric Additive Modeling , 1999 .

[23]  Arnab Maity,et al.  Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data , 2009, Statistics in biosciences.

[24]  S. Geer Empirical Processes in M-Estimation , 2000 .