A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation

In this paper, a new class of lower bounds on the outage error probability in Bayesian parameter estimation is proposed. The outage error probability is an important criterion in parameter estimation that provides meaningful information even in the presence of large errors and is useful for prediction of the system operation region. Computation of the minimum outage error probability is usually not tractable and thus, lower bounds on this probability can be very useful for performance analysis. The proposed class of lower bounds on the outage error probability is derived using Hölder's inequality. Several bounds in the proposed class are presented. It is shown that the Ziv-Zakai lower bound on the outage error probability can be obtained from a subclass in the proposed class of bounds. The proposed class of bounds is utilized to derive a new class of Bayesian bounds on the mean-square error. It is shown that, for unimodal posterior probability density functions, the tightest lower bound on the probability of outage error in the proposed class attains the minimum probability of outage error. The proposed bounds are exemplified in linear Gaussian model parameter estimation and time-delay estimation.

[1]  Joseph Tabrikian,et al.  A general class of lower bounds on the probability of error in multiple hypothesis testing , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[2]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[3]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[4]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.

[5]  Kristine L. Bell,et al.  A Lower Bound on the Estimation Error for Certain Diffusion Processes , 2007 .

[6]  Mati Wax,et al.  Improved bounds on the local mean-square error and the bias of parameter estimators (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[7]  Marvin K. Simon,et al.  Digital Communication Techniques: Signal Design and Detection , 2008 .

[8]  George L. Turin,et al.  The theory of optimum noise immunity , 1959 .

[9]  Brian M. Sadler,et al.  A Survey of Time Delay Estimation Performance Bounds , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[10]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[11]  Jacob Ziv,et al.  Improved Lower Bounds on Signal Parameter Estimation , 1975, IEEE Trans. Inf. Theory.

[12]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[13]  Joseph Tabrikian,et al.  Outage error probability lower bounds in vector parameter estimation , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[14]  Ehud Weinstein,et al.  A lower bound on the mean-square error in random parameter estimation , 1985, IEEE Trans. Inf. Theory.

[15]  Wen Xu,et al.  Bayesian bounds for matched-field parameter estimation , 2004, IEEE Transactions on Signal Processing.

[16]  Kristine L. Bell,et al.  Explicit Ziv-Zakai lower bound for bearing estimation , 1996, IEEE Trans. Signal Process..

[17]  Fredrik Athley,et al.  Performance analysis of DOA estimation in the threshold region , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[18]  Ben-Zion Bobrovsky,et al.  A lower bound on the estimation error for certain diffusion processes , 1976, IEEE Trans. Inf. Theory.

[19]  Philippe Forster,et al.  The Bayesian ABEL Bound on the Mean Square Error , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[20]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[21]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[22]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[23]  Philippe Forster,et al.  Harmonic retrieval in the presence of non-circular Gaussian multiplicative noise: performance bounds , 2005, Signal Process..

[24]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[25]  J. Ziv,et al.  A Generalization of the Rate-Distortion Theory and Applications , 1975 .

[26]  Lawrence D. Brown,et al.  Bounds on the Bayes and minimax risk for signal parameter estimation , 1993, IEEE Trans. Inf. Theory.

[27]  Sandro Bellini,et al.  Bounds on Error in Signal Parameter Estimation , 1974, IEEE Trans. Commun..

[28]  Kellen Petersen August Real Analysis , 2009 .

[29]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[30]  Yuri I. Abramovich,et al.  Detection–Estimation of Very Close Emitters: Performance Breakdown, Ambiguity, and General Statistical Analysis of Maximum-Likelihood Estimation , 2010, IEEE Transactions on Signal Processing.

[31]  John P. Ianniello,et al.  Lower bounds on worst case probability of large error for two channel time delay estimation , 1985, IEEE Trans. Acoust. Speech Signal Process..

[32]  Joseph Tabrikian,et al.  General classes of Bayesian lower bounds for outage error probability and MSE , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[33]  Godfried T. Toussaint,et al.  Bibliography on estimation of misclassification , 1974, IEEE Trans. Inf. Theory.

[34]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[35]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[36]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[37]  Kristine L. Bell,et al.  Improved Bounds on the Local MeanSquare Error and the Bias of Parameter Estimators , 2007 .

[38]  R. Cooke Real and Complex Analysis , 2011 .