Blind Gain and Phase Calibration via Sparse Spectral Methods

Blind gain and phase calibration (BGPC) is a bilinear inverse problem involving the determination of unknown gains and phases of the sensing system, and the unknown signal, jointly. BGPC arises in numerous applications, e.g., blind albedo estimation in inverse rendering, synthetic aperture radar autofocus, and sensor array auto-calibration. In some cases, sparse structure in the unknown signal alleviates the ill-posedness of BGPC. Recently, there has been renewed interest in solutions to BGPC with careful analysis of error bounds. In this paper, we formulate BGPC as an eigenvalue/eigenvector problem and propose to solve it via power iteration, or in the sparsity or joint sparsity case, via truncated power iteration. Under certain assumptions, the unknown gains, phases, and the unknown signal can be recovered simultaneously. Numerical experiments show that power iteration algorithms work not only in the regime predicted by our main results, but also in regimes where theoretical analysis is limited. We also show that our power iteration algorithms for BGPC compare favorably with competing algorithms in adversarial conditions, e.g., with noisy measurement or with a bad initial estimate.

[1]  Laurent Jacques,et al.  A non-convex blind calibration method for randomised sensing strategies , 2016, 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[2]  Yoram Bresler,et al.  Near Optimal Compressed Sensing of Sparse Rank-One Matrices via Sparse Power Factorization , 2013, ArXiv.

[3]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[4]  B. Recht,et al.  Convex Blind Deconvolution with Random Masks , 2014 .

[5]  Rémi Gribonval,et al.  Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity , 2013, IEEE Transactions on Signal Processing.

[6]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[7]  Valerio Cambareri,et al.  A greedy blind calibration method for compressed sensing with unknown sensor gains , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[8]  L. Balzano,et al.  Blind Calibration of Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[9]  Shai Avidan,et al.  Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.

[10]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[11]  Xiao-Tong Yuan,et al.  Truncated power method for sparse eigenvalue problems , 2011, J. Mach. Learn. Res..

[12]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[13]  Justin Romberg,et al.  Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation , 2016, AISTATS.

[14]  Yuejie Chi,et al.  Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization , 2015, IEEE Journal of Selected Topics in Signal Processing.

[15]  Thomas Strohmer,et al.  Self-Calibration via Linear Least Squares , 2016, ArXiv.

[16]  Yanjun Li,et al.  Identifiability in Bilinear Inverse Problems With Applications to Subspace or Sparsity-Constrained Blind Gain and Phase Calibration , 2017, IEEE Transactions on Information Theory.

[17]  Kiryung Lee,et al.  RIP-like Properties in Subsampled Blind Deconvolution , 2015, ArXiv.

[18]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[19]  Yanjun Li,et al.  Optimal Sample Complexity for Blind Gain and Phase Calibration , 2015, IEEE Transactions on Signal Processing.

[20]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[21]  P. Schultheiss,et al.  Localization performance of arrays subject to phase errors , 1988 .

[22]  Philippe Rigollet,et al.  Computational Lower Bounds for Sparse PCA , 2013, ArXiv.

[23]  Yonina C. Eldar,et al.  Sensor Calibration for Off-the-Grid Spectral Estimation , 2017, Applied and Computational Harmonic Analysis.

[24]  Thomas Kailath,et al.  Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[25]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[26]  Marius Junge,et al.  Generalized notions of sparsity and restricted isometry property. Part I: a unified framework , 2017, Information and Inference: A Journal of the IMA.

[27]  Yoram Bresler,et al.  Perfect blind restoration of images blurred by multiple filters: theory and efficient algorithms , 1999, IEEE Trans. Image Process..

[28]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[29]  B. Carl Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces , 1985 .

[30]  Minh N. Do,et al.  MCA: A Multichannel Approach to SAR Autofocus , 2009, IEEE Transactions on Image Processing.

[31]  S. Artstein,et al.  Duality of metric entropy , 2004 .

[32]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[33]  Felix Krahmer,et al.  Optimal Injectivity Conditions for Bilinear Inverse Problems with Applications to Identifiability of Deconvolution Problems , 2016, SIAM J. Appl. Algebra Geom..

[34]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[35]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[36]  John Wright,et al.  When Are Nonconvex Problems Not Scary? , 2015, ArXiv.

[37]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[38]  Thomas Strohmer,et al.  Self-Calibration and Bilinear Inverse Problems via Linear Least Squares , 2016, SIAM J. Imaging Sci..

[39]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[40]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[41]  Minh N. Do,et al.  Subspace methods for computational relighting , 2013, Electronic Imaging.

[42]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere II: Recovery by Riemannian Trust-Region Method , 2015, IEEE Transactions on Information Theory.

[43]  Laura Balzano,et al.  Robust blind calibration via total least squares , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Lang Tong,et al.  A new approach to blind identification and equalization of multipath channels , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[45]  Thomas Strohmer,et al.  Self-calibration and biconvex compressive sensing , 2015, ArXiv.

[46]  Y. Bresler,et al.  Blind gain and phase calibration for low-dimensional or sparse signal sensing via power iteration , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[47]  Justin K. Romberg,et al.  Lifting for Blind Deconvolution in Random Mask Imaging: Identifiability and Convex Relaxation , 2015, SIAM J. Imaging Sci..

[48]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[49]  Yoram Bresler,et al.  FIR perfect signal reconstruction from multiple convolutions: minimum deconvolver orders , 1998, IEEE Trans. Signal Process..

[50]  Yanjun Li,et al.  Optimal sample complexity for stable matrix recovery , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[51]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[52]  Justin K. Romberg,et al.  Blind Deconvolution Using Convex Programming , 2012, IEEE Transactions on Information Theory.

[53]  Laurent Demanet,et al.  Leveraging Diversity and Sparsity in Blind Deconvolution , 2016, IEEE Transactions on Information Theory.

[54]  Yanjun Li,et al.  Blind Recovery of Sparse Signals From Subsampled Convolution , 2015, IEEE Transactions on Information Theory.

[55]  M. Rudelson,et al.  Hanson-Wright inequality and sub-gaussian concentration , 2013 .

[56]  Xiaodong Li,et al.  Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.

[57]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[58]  B. Friedlander,et al.  Eigenstructure methods for direction finding with sensor gain and phase uncertainties , 1990 .

[59]  Felix Krahmer,et al.  Spectral Methods for Passive Imaging: Non-asymptotic Performance and Robustness , 2017, SIAM J. Imaging Sci..

[60]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[61]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[62]  Liming Wang,et al.  Blind Deconvolution From Multiple Sparse Inputs , 2016, IEEE Signal Processing Letters.

[63]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[64]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[65]  Gene H. Golub,et al.  Matrix Computations, Third Edition , 1996 .

[66]  Babak Hassibi,et al.  Sparse Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2013, IEEE Transactions on Signal Processing.

[67]  Augustin Cosse,et al.  From Blind deconvolution to Blind Super-Resolution through convex programming , 2017, ArXiv.

[68]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[69]  Eric Moulines,et al.  Subspace methods for the blind identification of multichannel FIR filters , 1995, IEEE Trans. Signal Process..

[70]  Yoram Bresler,et al.  Near-Optimal Compressed Sensing of a Class of Sparse Low-Rank Matrices Via Sparse Power Factorization , 2013, IEEE Transactions on Information Theory.

[71]  Justin Romberg,et al.  Fast and Guaranteed Blind Multichannel Deconvolution Under a Bilinear System Model , 2016, IEEE Transactions on Information Theory.

[72]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.