Inter-surface mapping

We consider the problem of creating a map between two arbitrary triangle meshes. Whereas previous approaches compose parametrizations over a simpler intermediate domain, we directly create and optimize a continuous map between the meshes. Map distortion is measured with a new symmetric metric, and is minimized during interleaved coarse-to-fine refinement of both meshes. By explicitly favoring low inter-surface distortion, we obtain maps that naturally align corresponding shape elements. Typically, the user need only specify a handful of feature correspondences for initial registration, and even these constraints can be removed during optimization. Our method robustly satisfies hard constraints if desired. Inter-surface mapping is shown using geometric and attribute morphs. Our general framework can also be applied to parametrize surfaces onto simplicial domains, such as coarse meshes (for semi-regular remeshing), and octahedron and toroidal domains (for geometry image remeshing). In these settings, we obtain better parametrizations than with previous specialized techniques, thanks to our fine-grain optimization.

[1]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[2]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[3]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[4]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[5]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[6]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[7]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[8]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[9]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[10]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[11]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[12]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[13]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[14]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[15]  Alla Sheffer,et al.  Matchmaker: constructing constrained texture maps , 2003, ACM Trans. Graph..

[16]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[17]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[18]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[19]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[20]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[21]  LévyBruno,et al.  Least squares conformal maps for automatic texture atlas generation , 2002 .

[22]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[23]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[24]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[25]  K. Hormann,et al.  Hierarchical Parametrization of Triangulated Surfaces , 2002 .

[26]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.