Mixed non-gaussianity from axion-gauge field dynamics

We study scalar-tensor-tensor cross correlation ⟨ ζ hh ⟩ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mixing terms in a non-perturbative manner. Combining that with the in-in formalism, we compute contributions from cubic interactions to the bispectrum Bζ hh. We find that the bispectrum is peaked at the folded configuration, which is a unique feature encoded by the scalar mixing and localized production of tensor modes. With our parameter choice, the amplitude of the bispectrum is k6 Bζ hh ∼ 10−16. The unique shape dependence, together with the parity-violating nature, is thus a distinguishing feature to search for in the CMB observables.

[1]  N. Bartolo,et al.  Measuring chiral gravitational waves in Chern-Simons gravity with CMB bispectra , 2018, Journal of Cosmology and Astroparticle Physics.

[2]  T. Hiramatsu,et al.  Hunting for statistical anisotropy in tensor modes with B -mode observations , 2018, Physical Review D.

[3]  M. Kamionkowski,et al.  Enhancing the cross-correlations between magnetic fields and scalar perturbations through parity violation , 2018, Journal of Cosmology and Astroparticle Physics.

[4]  M. Kamionkowski,et al.  Cross-correlations between scalar perturbations and magnetic fields in bouncing universes , 2018, Journal of Cosmology and Astroparticle Physics.

[5]  M. Pieroni,et al.  Emerging chromo-natural inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[6]  M. Peloso,et al.  Nonlinear perturbations from the coupling of the inflaton to a non-Abelian gauge field, with a focus on Chromo-Natural Inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[7]  K. Koyama,et al.  Non-Gaussianity from axion-gauge fields interactions during inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[8]  J. García-Bellido,et al.  Probing non-Gaussian stochastic gravitational wave backgrounds with LISA , 2018, Journal of Cosmology and Astroparticle Physics.

[9]  G. Dall’Agata Chromo-natural inflation in Supergravity , 2018, Physics Letters B.

[10]  E. Komatsu,et al.  Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search , 2018, Journal of Cosmology and Astroparticle Physics.

[11]  K. Ng,et al.  Primordial black holes and associated gravitational waves in axion monodromy inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[12]  Takahiro Tanaka,et al.  Statistically anisotropic tensor modes from inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[13]  O. Ozsoy On synthetic gravitational waves from multi-field inflation , 2017, 1712.01991.

[14]  Ogan Özsoy On Synthetic Gravitational Waves from Multi-field Inflation , 2017 .

[15]  J. Soda,et al.  Anisotropic constant-roll Inflation , 2017, 1710.09701.

[16]  M. Liguori,et al.  Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra , 2017, 1709.05695.

[17]  C. Caprini,et al.  Inflationary magnetogenesis with added helicity: constraints from non-Gaussianities , 2017, 1707.09750.

[18]  N. Katayama,et al.  Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers , 2017, 1707.03240.

[19]  Eiichiro Komatsu,et al.  Large Tensor Non-Gaussianity from Axion-Gauge Fields Dynamics , 2017, 1707.03023.

[20]  J. García-Bellido,et al.  Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter , 2017, 1707.02441.

[21]  Tomohiro Fujita,et al.  Does the detection of primordial gravitational waves exclude low energy inflation , 2017, 1705.01533.

[22]  L. Witkowski,et al.  PBH dark matter from axion inflation , 2017, 1704.03464.

[23]  Ippei Obata Chiral primordial blue tensor spectra from the axion-gauge couplings , 2016, 1612.08817.

[24]  J. García-Bellido,et al.  Gravitational waves at interferometer scales and primordial black holes in axion inflation , 2016, 1610.03763.

[25]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[26]  E. Sfakianakis,et al.  Higgsed Chromo-Natural Inflation , 2016, Journal of High Energy Physics.

[27]  M. Fasiello,et al.  Primordial gravitational waves from axion-gauge fields dynamics , 2016, 1608.04216.

[28]  Ippei Obata,et al.  Oscillating Chiral Tensor Spectrum from Axionic Inflation , 2016, 1607.01847.

[29]  E. Sfakianakis,et al.  Magnetogenesis from axion inflation , 2016, 1606.08474.

[30]  M. Peloso,et al.  Rolling axions during inflation: perturbativity and signatures , 2016, 1606.00459.

[31]  S. Matarrese,et al.  Gravitational waves from inflation , 2016, 1605.01615.

[32]  A. Maleknejad Axion inflation with an SU(2) gauge field: detectable chiral gravity waves , 2016, 1604.03327.

[33]  P. Bin'etruy,et al.  Primordial gravitational waves for universality classes of pseudoscalar inflation , 2016, 1603.01287.

[34]  J. Soda,et al.  MHz gravitational waves from short-term anisotropic inflation , 2016, 1603.00602.

[35]  Ippei Obata,et al.  Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation , 2016, 1602.06024.

[36]  Tomohiro Fujita,et al.  Pre-reheating Magnetogenesis in the Kinetic Coupling Model , 2016, 1602.05673.

[37]  J. Soda,et al.  Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays , 2015, 1512.09139.

[38]  J. Noreña,et al.  On the validity of the perturbative description of axions during inflation , 2015, 1512.06116.

[39]  H. Firouzjahi,et al.  Primordial statistical anisotropies: the effective field theory approach , 2015, 1511.03218.

[40]  Maresuke Shiraishi,et al.  Scale-dependent gravitational waves from a rolling axion , 2015, 1509.07521.

[41]  Kiwoon Choi,et al.  Primordial perturbations from dilaton-induced gauge fields , 2015, 1507.04977.

[42]  J. Soda,et al.  Designing Anisotropic Inflation with Form Fields , 2015, 1506.02450.

[43]  S. Matarrese,et al.  Parity-violating CMB correlators with non-decaying statistical anisotropy , 2015, 1505.02193.

[44]  Tomohiro Fujita,et al.  Consistent generation of magnetic fields in axion inflation models , 2015, 1503.05802.

[45]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[46]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[47]  Ippei Obata,et al.  Chromo-Natural Inflation in the Axiverse , 2014, 1412.7620.

[48]  E. Komatsu,et al.  Anisotropic inflation reexamined: upper bound on broken rotational invariance during inflation , 2014, 1411.5489.

[49]  S. Matarrese,et al.  Parity-violating and anisotropic correlations in pseudoscalar inflation , 2014, 1411.2521.

[50]  M. Sloth,et al.  Universal constraints on axions from inflation , 2014, 1409.5799.

[51]  Ippei Obata,et al.  Dynamics of Electroweak Gauge Fields during and after Higgs Inflation , 2014, 1405.3091.

[52]  M. Peloso,et al.  Blue tensor spectrum from particle production during inflation , 2014, 1405.0346.

[53]  M. Sloth,et al.  Inflationary magnetogenesis without the strong coupling problem II: constraints from CMB anisotropies and B-modes , 2014, 1403.5516.

[54]  Shuichiro Yokoyama,et al.  Critical constraint on inflationary magnetogenesis , 2014, 1402.0596.

[55]  A. Maleknejad,et al.  Chromo-natural model in anisotropic background , 2013, 1311.3361.

[56]  S. Oguri,et al.  Mission Design of LiteBIRD , 2013, 1311.2847.

[57]  S. Tsujikawa,et al.  Observational signatures of anisotropic inflationary models , 2013, 1308.4488.

[58]  M. Shiraishi Polarization bispectrum for measuring primordial magnetic fields , 2013, 1308.2531.

[59]  Ryo Namba,et al.  Gauge-flation confronted with Planck , 2013, 1308.1366.

[60]  Tomo Takahashi,et al.  Mixed inflaton and spectator field models after Planck , 2013, 1306.5958.

[61]  Shuichiro Yokoyama,et al.  Higher order statistics of curvature perturbations in IFF model and its Planck constraints , 2013, 1306.2992.

[62]  M. Sloth,et al.  Inflationary magnetogenesis without the strong coupling problem , 2013, 1305.7151.

[63]  P. Adshead,et al.  Perturbations in Chromo-Natural Inflation , 2013, 1305.2930.

[64]  P. Adshead,et al.  Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound , 2013, 1301.2598.

[65]  M. Zarei,et al.  Slow-roll trajectories in Chromo-Natural and Gauge-flation Models, an exhaustive analysis , 2012, 1212.6760.

[66]  M. Peloso,et al.  Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound , 2012, 1212.5184.

[67]  M. Sheikh-Jabbari,et al.  Gauge fields and inflation , 2012, 1212.2921.

[68]  Andrei Linde,et al.  Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes , 2012, 1212.1693.

[69]  M. Fasiello,et al.  Low-energy effective field theory for chromo-natural inflation , 2012, 1211.1396.

[70]  S. Matarrese,et al.  The anisotropic power spectrum and bispectrum in the f (')F 2 mechanism , 2012, 1210.3257.

[71]  L. Sorbo,et al.  Erratum: Particle production during inflation and gravitational waves detectable by ground-based interferometers [Phys. Rev. D 85, 023534 (2012)PRVDAQ1550-7998] , 2012 .

[72]  Gary Shiu,et al.  Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton , 2012, 1206.6117.

[73]  S. Mukohyama,et al.  Universal upper limit on inflation energy scale from cosmic magnetic field , 2012, 1205.5031.

[74]  L. Sorbo,et al.  Non-Gaussianities and chiral gravitational waves in natural steep inflation , 2012, 1203.5849.

[75]  M. Sheikh-Jabbari,et al.  Gauge-flation Vs Chromo-Natural Inflation , 2012, 1203.2265.

[76]  P. Adshead,et al.  Gauge-flation trajectories in chromo-natural inflation , 2012, 1203.2264.

[77]  M. Shiraishi Parity violation of primordial magnetic fields in the CMB bispectrum , 2012, 1202.2847.

[78]  P. Adshead,et al.  Natural inflation on a steep potential with classical non-Abelian gauge fields. , 2012, Physical review letters.

[79]  Ryo Namba,et al.  Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis , 2012, 1202.1469.

[80]  J. Soda Statistical anisotropy from anisotropic inflation , 2012, 1201.6434.

[81]  M. Peloso,et al.  Gauge Field Production in Axion Inflation: Consequences for Monodromy, non-Gaussianity in the CMB, and Gravitational Waves at Interferometers , 2011, 1110.3327.

[82]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[83]  M. M. Sheikh-Jabbari,et al.  Non-Abelian Gauge Field Inflation , 2011, 1102.1932.

[84]  M. M. Sheikh-Jabbari,et al.  Gauge-flation: Inflation From Non-Abelian Gauge Fields , 2011, 1102.1513.

[85]  L. Sorbo Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton , 2011, 1101.1525.

[86]  J. Soda,et al.  Imprints of the anisotropic inflation on the cosmic microwave background , 2010, 1011.3604.

[87]  Marco Peloso,et al.  Large non-gaussianity in axion inflation. , 2010, Physical review letters.

[88]  J. Soda,et al.  Anisotropic power-law inflation , 2010, 1010.5307.

[89]  J. Soda,et al.  The Nature of Primordial Fluctuations from Anisotropic Inflation , 2010, 1003.0056.

[90]  M. Peloso,et al.  Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation , 2010, 1001.4088.

[91]  B. Himmetoḡlu Spectrum of perturbations in anisotropic inflationary universe with vector hair , 2009, 0910.3235.

[92]  J. Soda,et al.  Cosmological magnetic fields from inflation and backreaction , 2009, 0908.3509.

[93]  H. Rubinstein,et al.  Magnetic fields from inflation , 2009, 0907.1030.

[94]  J. Soda,et al.  Inflationary universe with anisotropic hair. , 2009, Physical review letters.

[95]  N. Seto,et al.  Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: Measuring a circular-polarization mode , 2008, 0801.4185.

[96]  J. Yokoyama,et al.  Generation of large scale magnetic fields in single-field inflation , 2007, 0711.4307.

[97]  S. Saito,et al.  Probing polarization states of primordial gravitational waves with cosmic microwave background anisotropies , 2007, 0705.3701.

[98]  G. Shiu,et al.  Inflationary trispectrum for models with large non-Gaussianities , 2006, hep-th/0610235.

[99]  N. Seto Quest for circular polarization of a gravitational wave background and orbits of laser interferometers in space , 2006, astro-ph/0609633.

[100]  N. Seto Prospects for direct detection of the circular polarization of the gravitational-wave background. , 2006, Physical review letters.

[101]  J. Valiviita,et al.  Non-Gaussianity of the primordial perturbation in the curvaton model , 2006, astro-ph/0607627.

[102]  S. Weinberg Quantum contributions to cosmological correlations , 2005, hep-th/0506236.

[103]  T. Moroi,et al.  Cosmic density perturbations from late decaying scalar condensations , 2002, hep-ph/0206026.

[104]  D. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001, hep-ph/0110002.

[105]  K. Enqvist,et al.  Adiabatic CMB perturbations in pre - big bang string cosmology , 2001, hep-ph/0109214.

[106]  H. Nilles,et al.  Coupled fields in external background with application to nonthermal production of gravitinos , 2001, hep-th/0103202.

[107]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[108]  Field,et al.  Primordial magnetic fields from pseudo Goldstone bosons. , 1992, Physical review. D, Particles and fields.

[109]  Bharat Ratra,et al.  Cosmological 'seed' magnetic field from inflation , 1991 .

[110]  S. Saito,et al.  Probing polarization states of primordial gravitational waves with CMB anisotropies , 2019 .