Second-order extended Kalman filter for extended object and group tracking

In this paper, we propose a novel method for estimating an elliptic shape approximation of a moving extended object that gives rise to multiple scattered measurements per frame. For this purpose, we parameterize the elliptic shape with its orientation and the lengths of the semi-axes. We relate an individual measurement with the ellipse parameters by means of a multiplicative noise model and derive a second-order extended Kalman filter for a closed-form recursive measurement update. The benefits of the new method are discussed by means of Monte Carlo simulations for both static and dynamic scenarios.

[1]  Christian Lundquist,et al.  Tracking rectangular and elliptical extended targets using laser measurements , 2011, 14th International Conference on Information Fusion.

[2]  Lyudmila Mihaylova,et al.  Group Object Tracking with a Sequential Monte Carlo Method Based on a Parameterised Likelihood Function , 2012 .

[3]  Wolfgang Koch,et al.  Comments on "Bayesian Approach to Extended Object and Cluster Tracking using Random Matrices" , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[4]  A. Germani,et al.  Optimal quadratic filtering of linear discrete-time non-Gaussian systems , 1995, IEEE Trans. Autom. Control..

[5]  J.W. Koch,et al.  Bayesian approach to extended object and cluster tracking using random matrices , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Uwe D. Hanebeck,et al.  Extended Object Tracking Based on Set-Theoretic and Stochastic Fusion , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[8]  Uwe D. Hanebeck,et al.  Recursive Bayesian pose and shape estimation of 3D objects using transformed plane curves , 2015, 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[9]  Konrad Schindler,et al.  Challenges of Ground Truth Evaluation of Multi-target Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[10]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[11]  Daniel Alexander Meissner,et al.  A multiple model PHD approach to tracking of cars under an assumed rectangular shape , 2014, 17th International Conference on Information Fusion (FUSION).

[12]  Wolfgang Koch,et al.  Road-map assisted convoy track maintenance using random matrices , 2008, 2008 11th International Conference on Information Fusion.

[13]  X. Rong Li,et al.  Nonlinear Estimation by LMMSE-Based Estimation With Optimized Uncorrelated Augmentation , 2015, IEEE Transactions on Signal Processing.

[14]  Paolo Braca,et al.  PHD extended target tracking using an incoherent X-band radar: Preliminary real-world experimental results , 2014, 17th International Conference on Information Fusion (FUSION).

[15]  Lyudmila Mihaylova,et al.  A novel Sequential Monte Carlo approach for extended object tracking based on border parameterisation , 2011, 14th International Conference on Information Fusion.

[16]  Dietrich Fränken,et al.  Advances on tracking of extended objects and group targets using random matrices , 2009, 2009 12th International Conference on Information Fusion.

[17]  Christian Lundquist,et al.  A Gaussian mixture PHD filter for extended target tracking , 2010, 2010 13th International Conference on Information Fusion.

[18]  Dietrich Fränken,et al.  Tracking of Extended Objects and Group Targets Using Random Matrices , 2008, IEEE Transactions on Signal Processing.

[19]  F. Carravetta,et al.  Polynomial filtering of discrete-time stochastic linear systems with multiplicative state noise , 1997, IEEE Trans. Autom. Control..

[20]  Uwe D. Hanebeck,et al.  Silhouette measurements for Bayesian object tracking in noisy point clouds , 2013, Proceedings of the 16th International Conference on Information Fusion.

[21]  Uwe D. Hanebeck,et al.  Tracking 3D shapes in noisy point clouds with Random Hypersurface Models , 2012, 2012 15th International Conference on Information Fusion.

[22]  Fredrik Gustafsson,et al.  An efficient implementation of the second order extended Kalman filter , 2011, 14th International Conference on Information Fusion.

[23]  Uwe D. Hanebeck,et al.  Modeling the target extent with multiplicative noise , 2012, 2012 15th International Conference on Information Fusion.

[24]  Jorge S. Marques,et al.  Performance evaluation of object detection algorithms for video surveillance , 2006, IEEE Transactions on Multimedia.

[25]  Yu Liu,et al.  Generalized linear minimum mean-square error estimation , 2013, Proceedings of the 16th International Conference on Information Fusion.

[26]  Karl Granström,et al.  Extended Object Tracking: Introduction, Overview and Applications , 2016, ArXiv.

[27]  Stefan Schaal,et al.  A new perspective and extension of the Gaussian Filter , 2015, Int. J. Robotics Res..

[28]  Uwe D. Hanebeck,et al.  Bayesian estimation of line segments , 2014, 2014 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[29]  Bastian Leibe,et al.  Exploring bounding box context for multi-object tracker fusion , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[30]  Uwe D. Hanebeck,et al.  Partial likelihood for unbiased extended object tracking , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[31]  M. Baum Student research highlight: Simultaneous tracking and shape estimation of extended targets , 2012, IEEE Aerospace and Electronic Systems Magazine.

[32]  Uwe D. Hanebeck,et al.  Extended Object Tracking with Random Hypersurface Models , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[34]  W. Koch,et al.  A Bayesian approach to extended object tracking and tracking of loosely structured target groups , 2005, 2005 7th International Conference on Information Fusion.

[35]  Simon J. Godsill,et al.  Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking , 2014, Digit. Signal Process..

[36]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[37]  Karl Granström,et al.  A phd Filter for Tracking Multiple Extended Targets Using Random Matrices , 2012, IEEE Transactions on Signal Processing.

[38]  Lyudmila Mihaylova,et al.  Box Particle Filtering for extended object tracking , 2012, 2012 15th International Conference on Information Fusion.

[39]  Gabriela Csurka,et al.  What is a good evaluation measure for semantic segmentation? , 2013, BMVC.