Real-time compression and streaming of 4D performances

We introduce a realtime compression architecture for 4D performance capture that is two orders of magnitude faster than current state-of-the-art techniques, yet achieves comparable visual quality and bitrate. We note how much of the algorithmic complexity in traditional 4D compression arises from the necessity to encode geometry using an explicit model (i.e. a triangle mesh). In contrast, we propose an encoder that leverages an implicit representation (namely a Signed Distance Function) to represent the observed geometry, as well as its changes through time. We demonstrate how SDFs, when defined over a small local region (i.e. a block), admit a low-dimensional embedding due to the innate geometric redundancies in their representation. We then propose an optimization that takes a Truncated SDF (i.e. a TSDF), such as those found in most rigid/non-rigid reconstruction pipelines, and efficiently projects each TSDF block onto the SDF latent space. This results in a collection of low entropy tuples that can be effectively quantized and symbolically encoded. On the decoder side, to avoid the typical artifacts of block-based coding, we also propose a variational optimization that compensates for quantization residuals in order to penalize unsightly discontinuities in the decompressed signal. This optimization is expressed in the SDF latent embedding, and hence can also be performed efficiently. We demonstrate our compression/decompression architecture by realizing, to the best of our knowledge, the first system for streaming a real-time captured 4D performance on consumer-level networks.

[1]  Tamy Boubekeur,et al.  Bounding proxies for shape approximation , 2017, ACM Trans. Graph..

[2]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[3]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[4]  Iain E. G. Richardson,et al.  The H.264 Advanced Video Compression Standard , 2010 .

[5]  Pushmeet Kohli,et al.  Fusion4D , 2016, ACM Trans. Graph..

[6]  Craig Gotsman,et al.  Compression of soft-body animation sequences , 2004, Comput. Graph..

[7]  Dieter Fox,et al.  DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[9]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Brian Wyvill,et al.  A Survey on Implicit Surface Polygonization , 2015, ACM Comput. Surv..

[11]  Alvaro Collet,et al.  Spatiotemporal atlas parameterization for evolving meshes , 2017, ACM Trans. Graph..

[12]  Lubomir D. Bourdev,et al.  Real-Time Adaptive Image Compression , 2017, ICML.

[13]  Tamy Boubekeur,et al.  Animated Mesh Approximation With Sphere-Meshes , 2016, ACM Trans. Graph..

[14]  Céline Hudelot,et al.  3D Mesh Compression , 2015, ACM Comput. Surv..

[15]  Andrea Tagliasacchi,et al.  Sphere-meshes for real-time hand modeling and tracking , 2016, ACM Trans. Graph..

[16]  Iain E. Richardson,et al.  The H.264 Advanced Video Compression Standard: Richardson/The H.264 Advanced Video Compression Standard , 2010 .

[17]  P. Jorgensen,et al.  Entropy encoding, Hilbert space, and Karhunen-Loève transforms , 2007, math-ph/0701056.

[18]  Peter Schelkens,et al.  JPEG2000. Part 10. Volumetric data encoding , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[19]  Václav Skala,et al.  A Perception Correlated Comparison Method for Dynamic Meshes , 2011, IEEE Transactions on Visualization and Computer Graphics.

[20]  Andrea Tagliasacchi,et al.  Sparse Iterative Closest Point , 2013, Comput. Graph. Forum.

[21]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[22]  Charles T. Loop,et al.  Holoportation: Virtual 3D Teleportation in Real-time , 2016, UIST.

[23]  Allan Grønlund Jørgensen,et al.  Fast Exact k-Means, k-Medians and Bregman Divergence Clustering in 1D , 2017, ArXiv.

[24]  Alvaro Collet,et al.  High-quality streamable free-viewpoint video , 2015, ACM Trans. Graph..

[25]  David Kim,et al.  The need 4 speed in real-time dense visual tracking , 2018, ACM Trans. Graph..

[26]  Wolfram Burgard,et al.  Compact RGBD Surface Models Based on Sparse Coding , 2013, AAAI.

[27]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[28]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[29]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[30]  C.-C. Jay Kuo,et al.  Technologies for 3D mesh compression: A survey , 2005, J. Vis. Commun. Image Represent..

[31]  G. Nigel Martin,et al.  * Range encoding: an algorithm for removing redundancy from a digitised message , 1979 .

[32]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[33]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[34]  Shahram Izadi,et al.  Motion2fusion , 2017, ACM Trans. Graph..

[35]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[36]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[37]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[38]  Matthias Nießner,et al.  VolumeDeform: Real-Time Volumetric Non-rigid Reconstruction , 2016, ECCV.

[39]  Tamy Boubekeur,et al.  Sphere-Meshes , 2013, ACM Trans. Graph..

[40]  Erik Schaffernicht,et al.  Compressed Voxel-Based Mapping Using Unsupervised Learning , 2017, Robotics.

[41]  Peter Schelkens,et al.  Wavelet Coding of Volumetric Medical Datasets , 2003, IEEE Trans. Medical Imaging.

[42]  Rémy Prost,et al.  Wavelet-based progressive compression scheme for triangle meshes: wavemesh , 2004, IEEE Transactions on Visualization and Computer Graphics.