Adaptive identification of linear time‐delay systems

Synthesis of an adaptive parameter identifier is developed for linear dynamic systems with finitely many lumped delays in the state vector and control input. These systems are governed by linear functional differential equations with uncertain time-invariant parameters and delays. The state of the system is assumed to be available for measurements. Constructive necessary and sufficient conditions for the system parameters and delays to be identifiable are provided. Once the parameter identifiability is guaranteed the simultaneous on-line identification of the system parameters and delays is achieved by the adaptive identifier proposed. Theoretical results are supported by numerical simulation. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[2]  Franco Blanchini,et al.  A Razumikhin-type lemma for functional differential equations with application to adaptive control , 1999, Autom..

[3]  Hartmut Logemann,et al.  Adaptive l-tracking for a class of infinite-dimensional systems , 1998 .

[4]  J. P. Lasalle Some Extensions of Liapunov's Second Method , 1960 .

[5]  Y. D. Landau,et al.  Adaptive control: The model reference approach , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Eduardo Sontag Linear Systems over Commutative Rings. A Survey , 1976 .

[7]  Erik I. Verriest,et al.  Robust stability and adaptive control of time-varying neutral systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[8]  Joseph Bentsman,et al.  Reduced spatial order model reference adaptive control of spatially varying distributed parameter systems of parabolic and hyperbolic types , 2001 .

[9]  Yury Orlov,et al.  Identifiability analysis of linear delay‐differential systems , 2002 .

[10]  Yury Orlov,et al.  Adaptive distributed parameter systems identification with enforceable identifiability conditions and reduced-order spatial differentiation , 2000, IEEE Trans. Autom. Control..

[11]  Kunihiko Ichikawa Control System Design based on Exact Model Matching Techniques , 1985 .

[12]  J. Hale Functional Differential Equations , 1971 .

[13]  Michael A. Demetriou,et al.  On-Line Parameter Estimation for Infinite-Dimensional Dynamical Systems , 1997 .

[14]  Sjoerd Verduyn Lunel Parameter identifiability of differential delay equations , 2001 .

[15]  A. Zemanian,et al.  Distribution theory and transform analysis , 1966 .

[16]  A. Stephen Morse Ring models for delay-differential systems , 1976, Autom..

[17]  A. Michel,et al.  An invariance theorem with applications to adaptive control , 1990 .

[18]  L. Habets,et al.  On the Genericity of Stabilizability for Time-Delay Systems , 1996 .

[19]  J. R. Haddock,et al.  Liapunov-Razumikhin functions and an invariance principle for functional differential equations , 1983 .

[20]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[21]  J. Richard,et al.  Identifiability analysis of linear time-delay systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).