Tuned preconditioners for inexact two‐sided inverse and Rayleigh quotient iteration

SUMMARY Convergence results are provided for inexact two-sided inverse and Rayleigh quotient iteration, which extend the previously established results to the generalized non-Hermitian eigenproblem and inexact solves with a decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising in two-sided methods is considered, and the successful tuning strategy for preconditioners is extended to two-sided methods, creating a novel way of preconditioning two-sided algorithms. Furthermore, it is shown that inexact two-sided Rayleigh quotient iteration and the inexact two-sided Jacobi-Davidson method (without subspace expansion) applied to the generalized preconditioned eigenvalue problem are equivalent when a certain number of steps of a Petrov–Galerkin–Krylov method is used and when this specific tuning strategy is applied. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Fei Xue,et al.  Efficient Preconditioned Inner Solves For Inexact Rayleigh Quotient Iteration And Their Connections To The Single-Vector Jacobi-Davidson Method , 2011, SIAM J. Matrix Anal. Appl..

[2]  David L. Darmofal,et al.  A Quasi-Minimal Residual Method for Simultaneous Primal-Dual Solutions and Superconvergent Functional Estimates , 2002, SIAM J. Sci. Comput..

[3]  Alastair Spence,et al.  CONVERGENCE THEORY FOR INEXACT INVERSE ITERATION APPLIED TO THE GENERALISED NONSYMMETRIC EIGENPROBLEM , 2007 .

[4]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[5]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[6]  M. Hestenes Inversion of Matrices by Biorthogonalization and Related Results , 1958 .

[7]  Fei Xue,et al.  Convergence Analysis of Iterative Solvers in Inexact Rayleigh Quotient Iteration , 2009, SIAM J. Matrix Anal. Appl..

[8]  P. Smit,et al.  THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .

[9]  M. Hochstenbach,et al.  Two-sided and alternating Jacobi-Davidson , 2001 .

[10]  A. M. Ostrowski,et al.  On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. III , 1959 .

[11]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[12]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[13]  Fei Xue,et al.  Fast Inexact Implicitly Restarted Arnoldi Method for Generalized Eigenvalue Problems with Spectral Transformation , 2012, SIAM J. Matrix Anal. Appl..

[14]  Andreas Stathopoulos,et al.  A Case for a Biorthogonal Jacobi-Davidson Method: Restarting and Correction Equation , 2002, SIAM J. Matrix Anal. Appl..

[15]  Alastair Spence,et al.  A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems , 2007 .

[16]  H. Simon,et al.  Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .

[17]  Zhongxiao Jia,et al.  On convergence of the inexact Rayleigh quotient iteration with MINRES , 2009, J. Comput. Appl. Math..

[18]  Alastair Spence,et al.  Shift-Invert Arnoldi's Method with Preconditioned Iterative Solves , 2009, SIAM J. Matrix Anal. Appl..

[19]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[20]  A. Wathen,et al.  APPROXIMATION OF THE SCATTERING AMPLITUDE AND LINEAR SYSTEMS , 2008 .

[21]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[22]  A. Spence,et al.  RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS , 2010 .

[23]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  Ivan G. Graham,et al.  Inexact inverse iteration for symmetric matrices , 2006 .

[26]  Axel Ruhe The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .

[27]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[28]  Gerard L. G. Sleijpen,et al.  Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..

[29]  T. Chan,et al.  An analysis of the composite step biconjugate gradient method , 1993 .

[30]  H. V. D. Vorst,et al.  The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme , 1995 .

[31]  Joost Rommes,et al.  Methods for eigenvalue problems with applications in model order reduction , 2007 .

[32]  Alastair Spence,et al.  Convergence of inexact inverse iteration with application to preconditioned iterative solves , 2007 .

[33]  Martin B. van Gijzen,et al.  Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.

[34]  Alastair Spence,et al.  Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems , 2009, SIAM J. Matrix Anal. Appl..

[35]  Y. Saad,et al.  Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods , 1998 .

[36]  B. Parlett The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .

[37]  Alastair Spence,et al.  Rayleigh quotient iteration and simplified Jacobi–Davidson method with preconditioned iterative solves , 2008 .

[38]  L. Eldén,et al.  Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .

[39]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[40]  Qiang Ye,et al.  A generalized LSQR algorithm , 2008, Numer. Linear Algebra Appl..

[41]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[42]  Peter Lancaster,et al.  Rayleigh quotient algorithms for nonsymmetric matrix pencils , 2009, Numerical Algorithms.

[43]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[44]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[45]  H. Elman,et al.  Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation , 2011 .

[46]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[47]  Randolph E. Bank,et al.  A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems , 1994, Numerical Algorithms.

[48]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..