Tuned preconditioners for inexact two‐sided inverse and Rayleigh quotient iteration
暂无分享,去创建一个
[1] Fei Xue,et al. Efficient Preconditioned Inner Solves For Inexact Rayleigh Quotient Iteration And Their Connections To The Single-Vector Jacobi-Davidson Method , 2011, SIAM J. Matrix Anal. Appl..
[2] David L. Darmofal,et al. A Quasi-Minimal Residual Method for Simultaneous Primal-Dual Solutions and Superconvergent Functional Estimates , 2002, SIAM J. Sci. Comput..
[3] Alastair Spence,et al. CONVERGENCE THEORY FOR INEXACT INVERSE ITERATION APPLIED TO THE GENERALISED NONSYMMETRIC EIGENPROBLEM , 2007 .
[4] Peter Benner,et al. Dimension Reduction of Large-Scale Systems , 2005 .
[5] Gerard L. G. Sleijpen,et al. A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .
[6] M. Hestenes. Inversion of Matrices by Biorthogonalization and Related Results , 1958 .
[7] Fei Xue,et al. Convergence Analysis of Iterative Solvers in Inexact Rayleigh Quotient Iteration , 2009, SIAM J. Matrix Anal. Appl..
[8] P. Smit,et al. THE EFFECTS OF INEXACT SOLVERS IN ALGORITHMS FOR SYMMETRIC EIGENVALUE PROBLEMS , 1999 .
[9] M. Hochstenbach,et al. Two-sided and alternating Jacobi-Davidson , 2001 .
[10] A. M. Ostrowski,et al. On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. III , 1959 .
[11] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[12] H. A. V. D. Vorsty. University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .
[13] Fei Xue,et al. Fast Inexact Implicitly Restarted Arnoldi Method for Generalized Eigenvalue Problems with Spectral Transformation , 2012, SIAM J. Matrix Anal. Appl..
[14] Andreas Stathopoulos,et al. A Case for a Biorthogonal Jacobi-Davidson Method: Restarting and Correction Equation , 2002, SIAM J. Matrix Anal. Appl..
[15] Alastair Spence,et al. A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems , 2007 .
[16] H. Simon,et al. Two Conjugate-Gradient-Type Methods for Unsymmetric Linear Equations , 1988 .
[17] Zhongxiao Jia,et al. On convergence of the inexact Rayleigh quotient iteration with MINRES , 2009, J. Comput. Appl. Math..
[18] Alastair Spence,et al. Shift-Invert Arnoldi's Method with Preconditioned Iterative Solves , 2009, SIAM J. Matrix Anal. Appl..
[19] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[20] A. Wathen,et al. APPROXIMATION OF THE SCATTERING AMPLITUDE AND LINEAR SYSTEMS , 2008 .
[21] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[22] A. Spence,et al. RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR GENERALISED EIGENVALUE PROBLEMS , 2010 .
[23] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[24] Gene H. Golub,et al. Matrix computations , 1983 .
[25] Ivan G. Graham,et al. Inexact inverse iteration for symmetric matrices , 2006 .
[26] Axel Ruhe. The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .
[27] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[28] Gerard L. G. Sleijpen,et al. Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..
[29] T. Chan,et al. An analysis of the composite step biconjugate gradient method , 1993 .
[30] H. V. D. Vorst,et al. The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme , 1995 .
[31] Joost Rommes,et al. Methods for eigenvalue problems with applications in model order reduction , 2007 .
[32] Alastair Spence,et al. Convergence of inexact inverse iteration with application to preconditioned iterative solves , 2007 .
[33] Martin B. van Gijzen,et al. Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.
[34] Alastair Spence,et al. Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems , 2009, SIAM J. Matrix Anal. Appl..
[35] Y. Saad,et al. Restarting techniques for the (Jacobi-)Davidson symmetric eigenvalue methods , 1998 .
[36] B. Parlett. The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices , 1974 .
[37] Alastair Spence,et al. Rayleigh quotient iteration and simplified Jacobi–Davidson method with preconditioned iterative solves , 2008 .
[38] L. Eldén,et al. Inexact Rayleigh Quotient-Type Methods for Eigenvalue Computations , 2002 .
[39] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[40] Qiang Ye,et al. A generalized LSQR algorithm , 2008, Numer. Linear Algebra Appl..
[41] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[42] Peter Lancaster,et al. Rayleigh quotient algorithms for nonsymmetric matrix pencils , 2009, Numerical Algorithms.
[43] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[44] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[45] H. Elman,et al. Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation , 2011 .
[46] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[47] Randolph E. Bank,et al. A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems , 1994, Numerical Algorithms.
[48] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..