Formation flying control for the MMS mission using GVE-based MPC

Formation flying is an enabling technology for many future space missions. This paper presents an MPC (model predictive control) controller that uses dynamics based on a modified version of Gauss' variational equations which incorporates osculating J2 effects. A linear parameter-varying version of existing dynamics is developed, creating a highly accurate model that can easily be embedded in the MPC controller design. The linearization assumptions are shown to be consistent with typical formation flying scenarios. The controller is demonstrated on an MMS-like mission using a commercial orbit propagator with realistic disturbances (including J2). These simulations show that (formation flying using MPC with J2-modified GVEs requires fuel use comparable to using unmodified GVEs in simulations with no J2 effects

[1]  J. How,et al.  Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits , 2000 .

[2]  K. Alfriend,et al.  State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit , 2003 .

[3]  H. Schaub,et al.  J2 Invariant Relative Orbits for Spacecraft Formations , 2001 .

[4]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[5]  Kyle T. Alfriend,et al.  NAVIGATION ACCURACY GUIDELINES FOR ORBITAL FORMATION FLYING , 2005 .

[6]  Pini Guré,et al.  Control-Theoretic Analysis of Low-Thrust Orbital Transfer Using Orbital Elements , 2003 .

[7]  S. Curtis,et al.  The Magnetospheric Multiscale Mission...Resolving Fundamental Processes in Space Plasmas , 1999 .

[8]  Jonathan P. How,et al.  Orion-Emerald: carrier differential GPS for LEO formation flying , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[9]  H. Schaub,et al.  Impulsive Feedback Control to Establish Specific Mean Orbit Elements of Spacecraft Formations , 2001 .

[10]  Bo James Naasz,et al.  Classical Element Feedback Control for Spacecraft Orbital Maneuvers , 2002 .

[11]  J. How,et al.  Semimajor Axis Estimation Strategies , 2004 .

[12]  Sergio A. Alvarez,et al.  Quadratic-Based Computation of Four-Impulse Optimal Rendezvous near Circular Orbit , 2000 .

[13]  David Mishne,et al.  Formation Control of Satellites Subject to Drag Variations and J2 Perturbations , 2002 .

[14]  P. Robert,et al.  13 - Tetrahedron Geometric Factors , 1998 .

[15]  Jonathan P. How,et al.  Co‐ordination and control of distributed spacecraft systems using convex optimization techniques , 2002 .

[16]  Jonathan P. How,et al.  Formation Flying Control in Eccentric Orbits , 2001 .

[17]  Anne Long,et al.  Relative Navigation Algorithms for Phase 1 of the MMS Formation , 2003 .

[18]  S. Vadali,et al.  Formation Flying: Accommodating Nonlinearity and Eccentricity Perturbations , 2003 .

[19]  R. Beard,et al.  VIRTUAL STRUCTURE BASED SPACECRAFT FORMATION CONTROL WITH FORMATION FEEDBACK , 2002 .

[20]  Jonathan P. How,et al.  Distributed coordination and control of formation flying spacecraft , 2003, Proceedings of the 2003 American Control Conference, 2003..

[21]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[22]  Anne Long,et al.  EVALUATION OF RELATIVE NAVIGATION ALGORITHMS FOR FORMATION-FLYING SATELLITES , 2001 .

[23]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .