The Kadison–Singer Problem in mathematics and engineering

We will see that the famous intractible 1959 Kadison–Singer Problem in C*-algebras is equivalent to fundamental open problems in a dozen different areas of research in mathematics and engineering. This work gives all these areas common ground on which to interact as well as explaining why each area has volumes of literature on their respective problems without a satisfactory resolution.

[1]  Dennis Gabor,et al.  Theory of communication , 1946 .

[2]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[3]  Alfred Horn,et al.  A Characterization of Union of Linearly Independent Sets , 1955 .

[4]  I. Singer,et al.  EXTENSIONS OF PURE STATES. , 1959 .

[5]  Edward Nelson,et al.  Representation of Elliptic Operators in an Enveloping Algebra , 1959 .

[6]  A. Messiah Quantum Mechanics , 1961 .

[7]  R. Rado,et al.  A Combinatorial Theorem on Vector Spaces , 1962 .

[8]  Tosio Kato Perturbation theory for linear operators , 1966 .

[9]  P. Duren Theory of H[p] spaces , 1970 .

[10]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[11]  H. Montgomery,et al.  Hilbert’s inequality , 1974 .

[12]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[13]  A. Szankowski Subspaces without the approximation property , 1978 .

[14]  Joel Anderson Extreme points in sets of positive linear maps on B(H) , 1979 .

[15]  Joel Anderson Extensions, restrictions, and representations of states on *-algebras , 1979 .

[16]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[17]  Joel Anderson A Conjecture Concerning the Pure States of B(H) and a Related Theorem , 1981 .

[18]  A. Szankowski B(H) does not have the approximation propertydoes not have the approximation property , 1981 .

[19]  Herbert Halpern,et al.  The relative Dixmier property in discrete crossed products , 1986 .

[20]  J. Bourgain,et al.  Invertibility of ‘large’ submatrices with applications to the geometry of Banach spaces and harmonic analysis , 1987 .

[21]  K. Berman,et al.  Matrix norm inequalities and the relative Dixmier property , 1988 .

[22]  N. Tomczak-Jaegermann Banach-Mazur distances and finite-dimensional operator ideals , 1989 .

[23]  J. Bourgain,et al.  On a problem of Kadison and Singer. , 1991 .

[24]  Computing summing norms and type constants on few vectors , 1991 .

[25]  C. Akemann,et al.  Lyapunov theorems for operator algebras , 1991 .

[26]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[27]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[28]  H. Montgomery Ten lectures on the interface between analytic number theory and harmonic analysis , 1994 .

[29]  O. Christensen A Paley-Wiener theorem for frames , 1995 .

[30]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[31]  R. Balan Stability theorems for Fourier frames and wavelet Riesz bases , 1997 .

[32]  Peter G. Casazza,et al.  Frames of translates , 1998 .

[33]  Every frame is a sum of three (but not two) orthonormal bases—and other frame representations , 1998, math/9811148.

[34]  Vivek K. Goyal,et al.  Quantized Overcomplete Expansions in IRN: Analysis, Synthesis, and Algorithms , 1998, IEEE Trans. Inf. Theory.

[35]  Vivek K. Goyal,et al.  Optimal multiple description transform coding of Gaussian vectors , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[36]  Vivek K Goyal,et al.  Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[37]  R. Vershynin John's decompositions: Selecting a large part , 1999, math/9909110.

[38]  Vivek K. Goyal,et al.  Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[39]  P. Duren Theory of Hp Spaces , 2000 .

[40]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[41]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[42]  Nik Weaver,et al.  A Counterexample to a Conjecture of Akemann and Anderson , 2001, math/0105183.

[43]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[44]  A. Aldroubi,et al.  p-Frames and Shift Invariant Subspaces of Lp , 2001 .

[45]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[46]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[47]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[48]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[50]  Karlheinz Gröchenig,et al.  Localized Frames Are Finite Unions of Riesz Sequences , 2003, Adv. Comput. Math..

[51]  Nicholas Weaver The Kadison-Singer problem in discrepancy theory , 2004, Discret. Math..

[52]  V. Paulsen,et al.  Optimal frames for erasures , 2004 .

[53]  Peter G. Casazza,et al.  Frames and the Feichtinger conjecture , 2004 .

[54]  Peter G. Casazza,et al.  Duality Principles in Frame Theory , 2004 .

[55]  V. Paulsen,et al.  Frames, graphs and erasures , 2004, math/0406134.

[56]  R. Vershynin Frame expansions with erasures: an approach through the non-commutative operator theory , 2004, math/0405566.

[57]  R.Balan,et al.  Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.

[58]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. I. Theory , 2005, math/0510360.

[59]  Peter G. Casazza,et al.  Decompositions of frames and a new frame identity , 2005, SPIE Optics + Photonics.

[60]  E. Candès,et al.  Error correction via linear programming , 2005, FOCS 2005.

[61]  R. Balan,et al.  Density, Overcompleteness, and Localization of Frames. II. Gabor Systems , 2005 .

[62]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[63]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[64]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[65]  Darrin Speegle,et al.  The Feichtinger Conjecture for Wavelet Frames, Gabor Frames and Frames of Translates , 2006, Canadian Journal of Mathematics.

[66]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[67]  R. Balan,et al.  Density, overcompleteness, and localization of frames , 2006 .

[68]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[69]  Peter G. Casazza,et al.  A redundant version of the Rado–Horn Theorem , 2006 .

[70]  Bernhard G. Bodmann,et al.  Fast algorithms for signal reconstruction without phase , 2007, SPIE Optical Engineering + Applications.

[71]  Peter G. Casazza,et al.  A decomposition theorem for frames and the Feichtinger Conjecture , 2007, math/0702216.

[72]  KADISON-SINGER MEETS BOURGAIN-TZAFRIRI , .