Glueing and orthogonality for models of linear logic

We present the general theory of the method of glueing and associated technique of orthogonality for constructing categorical models of all the structure of linear logic: in particular we treat the exponentials in detail. We indicate simple applications of the methods and show that they cover familiar examples.

[1]  Radha Jagadeesan,et al.  Full Abstraction for PCF , 1994, Inf. Comput..

[2]  S. Lack,et al.  The formal theory of monads II , 2002 .

[3]  J. Girard,et al.  Advances in Linear Logic , 1995 .

[4]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .

[5]  Martin Hyland,et al.  Abstract Games for Linear Logic , 1999, CTCS.

[6]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[7]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[8]  Ralph Loader Linear logic, totality and full completeness , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[9]  J. Beck,et al.  TRIPLES, ALGEBRAS AND COHOMOLOGY , 1967 .

[10]  Paul Curzon,et al.  On Intuitionistic Linear Logic , 2005 .

[11]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[12]  de Paiva,et al.  The Dialectica categories , 1991 .

[13]  A. Joyal,et al.  An extension of the Galois theory of Grothendieck , 1984 .

[14]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[15]  Samson Abramsky Semantics of Interaction (Abstract) , 1996, CAAP.

[16]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[17]  J. Lambek Bilinear logic in algebra and linguistics , 1995 .

[18]  S. Abramsky Game Semantics , 1999 .

[19]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[20]  Gordon D. Plotkin,et al.  Full completeness of the multiplicative linear logic of Chu spaces , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[21]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[22]  J. Diller Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .

[23]  Martin Hyland,et al.  Proof theory in the abstract , 2002, Ann. Pure Appl. Log..

[24]  Samson Abramsky,et al.  Full Abstraction for PCF * ( Extended Abstract ) , 1994 .

[25]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[26]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[27]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[28]  Michael Barr,et al.  Accessible categories and models of linear logic , 1991 .

[29]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[30]  Nick Benton,et al.  Linear Lambda-Calculus and Categorial Models Revisited , 1992, CSL.

[31]  Gianluigi Bellin Chu's Construction: A Proof-Theoretic Approach , 2003, Logic for Concurrency and Synchronisation.

[32]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[33]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[34]  Ralph Loader Models of Lambda Calculi and Linear Logic: Structural, Equational and Proof-Theoretic Characterisati , 1994 .

[35]  Hanno Nickau Hereditarily Sequential Functionals , 1994, LFCS.

[36]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[37]  Valeria de Paiva,et al.  A Dialectica-like Model of Linear Logic , 1989, Category Theory and Computer Science.

[38]  R. A. G. Seely,et al.  Weakly distributive categories , 1997 .

[39]  S. Abramsky Semantics of Interaction: an introduction to Game Semantics , 1997 .

[40]  R. Seely,et al.  Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories. , 1997 .

[41]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.