Accuracy control in the optimization of microwave devices by finite-element methods

Automatically optimizing the design of a microwave device can be prohibitively time-consuming when a numerical electromagnetic-field analysis is necessary at each iteration. However, the time taken for the field analysis depends on the accuracy required, and in the early stage of the optimization relatively inaccurate solutions are adequate. This idea is exploited in a scheme that combines a quasi-Newton constrained optimizer with a two-dimensional p-adaptive finite-element method for finding scattering parameters. The scheme has been tested on three H-plane rectangular waveguide devices: a T-junction, a miter bend with a dielectric column, and a two-cavity iris-coupled filter. Time savings of more than an order of magnitude were obtained, compared to the standard approach of requiring equally high accuracy throughout the optimization.

[1]  Jin-Fa Lee,et al.  Fast frequency sweep technique for the efficient analysis of dielectric waveguides , 1997 .

[2]  Baden Fuller Microwaves: An introduction to microwave theory and techniques , 1979 .

[3]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[4]  Tapan K. Sarkar,et al.  Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling , 1998 .

[5]  John W. Bandler,et al.  Space mapping optimization of waveguide filters using finite element and mode‐matching electromagnetic simulators , 1999 .

[6]  Dominique Baillargeat,et al.  A full electromagnetic CAD tool for microwave devices using a finite element method and neural networks , 2000 .

[7]  S. McFee,et al.  Adaptive finite elements analysis of microwave and optical devices using hierarchal triangles , 1992 .

[8]  Jin-Fa Lee,et al.  An Adaptive Spectral Response Modeling Procedure for Multiport Microwave Circuits , 1987 .

[9]  K.A. Zaki,et al.  Design and Tolerance Analysis of Thick Iris Waveguide Bandpass Filters , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[10]  Tatsuo Itoh,et al.  A systematic optimum design of waveguide-to-microstrip transition , 1997 .

[11]  Andrzej J. Strojwas,et al.  Asymptotic waveform evaluation for transient analysis of 3-D interconnect structures , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Jin-Fa Lee,et al.  Analysis of passive microwave devices by using three‐dimensional tangential vector finite elements , 1990 .

[13]  Jiang Kexun,et al.  P-version adaptive computation of FEM , 1994 .

[14]  J. P. Webb,et al.  An Error Estimator for Design Sensitivities of Microwave Device Parameters , 2002 .

[15]  Mauro Mongiardo,et al.  A fullwave CAD tool for waveguide components using a high speed direct optimizer , 1994 .

[16]  M. Koshiba,et al.  Finite-Element Analysis of H-Plane Waveguide Junction with Arbitrarily Shaped Ferrite Post , 1986 .

[17]  Jin-Fa Lee,et al.  Adaptive mesh refinement, h-version, for solving multiport microwave devices in three dimensions , 2000 .

[18]  Jin-Fa Lee,et al.  The transfinite element method for modeling MMIC devices , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[19]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[20]  C. Cheon,et al.  Shape optimization of H-plane waveguide tee junction using edge finite element method , 1995 .

[21]  John L. Volakis,et al.  AWE implementation for electromagnetic FEM analysis , 1996 .

[22]  M. Guglielmi,et al.  Simple and effective EM-based optimization procedure for microwave filters , 1997 .

[23]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[24]  Ivo Babuška,et al.  Trends in finite elements , 1989 .

[25]  Jon P. Webb,et al.  Design sensitivities for scattering-matrix calculation with tetrahedral edge elements , 2000 .

[26]  Ralf Hiptmair,et al.  Multilevel solution of the time‐harmonic Maxwell's equations based on edge elements , 1999 .

[28]  Jon P. Webb,et al.  Hierarchal triangular elements using orthogonal polynomials , 1995 .

[29]  Qi-Jun Zhang,et al.  A fast method for frequency and time domain simulation of high-speed VLSI interconnects , 1994 .