Local Scale Control for Edge Detection and Blur Estimation

Selecting the appropriate spatial scale for local edge analysis is a challenge for natural images, where blur scale and contrast may vary over a broad range. While previous methods for scale adaptation have required the global solution of a non-convex optimization problem [8], it is shown that knowledge of sensor properties and operator norms can be exploited to define a unique, locally-computable minimum reliable scale for local estimation. The resulting method for local scale control allows edges spanning a broad range of blur scales and contrasts to be reliably localized by a single system with no input parameters other than the second moment of the sensor noise. Local scale control further permits the reliable estimation of local blur scale in complex images where the conditions demanded by Fourier methods for blur estimation break down.

[1]  Wei Zhang,et al.  An extension of Marr's signature based edge classification and other methods determining diffuseness and height of edges, and bar edge width , 1993, 1993 (4th) International Conference on Computer Vision.

[2]  Shree K. Nayar,et al.  Shape from Focus , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hong Jeong,et al.  Adaptive Determination of Filter Scales for Edge Detection , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Peter Lawrence,et al.  An Investigation of Methods for Determining Depth from Focus , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Steven W. Zucker,et al.  The Local Structure of Image Discontinuities in One Dimension , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  J. Canny Finding Edges and Lines in Images , 1983 .

[7]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Alex Pentland,et al.  A New Sense for Depth of Field , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[10]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[11]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[13]  Steven W. Zucker,et al.  Logical/Linear Operators for Image Curves , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Axel Korn,et al.  Toward a Symbolic Representation of Intensity Changes in Images , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  S. Zucker,et al.  The visual computation of bounding contours , 1995 .