Interaction of multicomponent anionic liposomes with cationic pyridylphenylene dendrimer: Does the complex behavior depend on the liposome composition?

[1]  P. Semenyuk,et al.  Interaction of Ionenes with Lipid Membrane: Unusual Impact of Charge Density. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[2]  V. Torchilin,et al.  Recent advancements in liposome technology. , 2020, Advanced drug delivery reviews.

[3]  A. Ezhov,et al.  Intracellular delivery of drugs by chitosan-based multi-liposomal complexes. , 2020, Colloids and surfaces. B, Biointerfaces.

[4]  Cheng-Chin Chiang,et al.  Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer , 2020, Science Advances.

[5]  Chunying Liu,et al.  Dendrimer-Based Drug Delivery Systems for Brain Targeting , 2019, Biomolecules.

[6]  E. Pędziwiatr-Werbicka,et al.  Dendrimers and hyperbranched structures for biomedical applications , 2019, European Polymer Journal.

[7]  C. García,et al.  Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials. , 2019, Future medicinal chemistry.

[8]  V. Muronetz,et al.  Promising anti-amyloid behavior of cationic pyridylphenylene dendrimers: Role of structural features and mechanism of action , 2019, European Polymer Journal.

[9]  W. Richtering,et al.  PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes , 2019, PloS one.

[10]  J. Hub,et al.  Molecular Mechanism of Polycation-Induced Pore Formation in Biomembranes. , 2018, ACS biomaterials science & engineering.

[11]  W. Briscoe,et al.  PAMAM dendrimer - cell membrane interactions. , 2018, Advances in colloid and interface science.

[12]  Cédric Gaillard,et al.  Spontaneous formation of nanofilms under interaction of 4th generation pyrydylphenylene dendrimer with proteins , 2018 .

[13]  C. Charcosset,et al.  Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. , 2018, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[14]  H. Schmalz,et al.  Composition and properties of complexes between anionic liposomes and diblock copolymers with cationic and poly(ethylene oxide) blocks , 2017 .

[15]  J. Bednar,et al.  Effect of Polycation Structure on Interaction with Lipid Membranes. , 2017, The journal of physical chemistry. B.

[16]  C. Lopez,et al.  Mechanical Properties of Membranes Composed of Gel-Phase or Fluid-Phase Phospholipids Probed on Liposomes by Atomic Force Spectroscopy. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[17]  P. Semenyuk,et al.  Complexes between cationic pyridylphenylene dendrimers and ovine prion protein: do hydrophobic interactions matter? , 2017 .

[18]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[19]  D. Barreca,et al.  Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. , 2016, Biochimica et biophysica acta.

[20]  M Ramezanpour,et al.  Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. , 2016, Biochimica et biophysica acta.

[21]  L. Monticelli,et al.  Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles , 2016 .

[22]  A. Yaroslavov,et al.  Effect of cholesterol on the phase state and permeability of mixed liposomes composed of anionic diphosphatidylglycerol and zwitterionic dipalmitoylphosphatidylcholine , 2016 .

[23]  V. Muronetz,et al.  Disruption of Amyloid Prion Protein Aggregates by Cationic Pyridylphenylene Dendrimers. , 2016, Macromolecular bioscience.

[24]  H. Schmalz,et al.  The Influence of the Chain Length of Polycations on their Complexation with Anionic Liposomes. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[26]  D. Fessas,et al.  Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. , 2015, Biochimica et biophysica acta.

[27]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges , 2012, J. Chem. Inf. Model..

[28]  A. Sybachin,et al.  Effect of anionic-lipid-molecule geometry on the structure and properties of liposome-polycation complexes , 2011 .

[29]  Alexander D. MacKerell,et al.  Development of the CHARMM Force Field for Lipids. , 2011, The journal of physical chemistry letters.

[30]  H. Byrne,et al.  Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. , 2010, Toxicology and applied pharmacology.

[31]  D. A. Davydov,et al.  Polymer migration among phospholipid liposomes. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[32]  Z. Shifrina,et al.  Water-Soluble Cationic Aromatic Dendrimers and Their Complexation with DNA , 2009 .

[33]  A. Sybachin,et al.  Effect of the phase state of the lipid bilayer on the structure and characteristics of the polycation-(anionic liposome) complex , 2009 .

[34]  Hsing-Wen Sung,et al.  Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. , 2009, Biomaterials.

[35]  Z. Shifrina,et al.  Interaction of water-soluble polypyridylphenylene dendrimers with a polymethacrylate anion , 2009 .

[36]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[37]  N. V. Firsova,et al.  Poly(Phenylene-pyridyl) Dendrimers: Synthesis and Templating of Metal Nanoparticles , 2005 .

[38]  R. McElhaney,et al.  The Mesomorphic Phase Behavior of Lipid Bilayers , 2004 .

[39]  A. Yaroslavov,et al.  Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. , 2002, Biochimica et biophysica acta.

[40]  B. Chowdhry,et al.  Infrared characterization of conformational differences in the lamellar phases of 1,3-dipalmitoyl-sn-glycero-2-phosphocholine. , 1985, Biochimica et biophysica acta.

[41]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[42]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[43]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[44]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[45]  J. Lazniewska,et al.  Cytotoxicity of Dendrimers , 2019, Biomolecules.

[46]  Xiangyang Shi,et al.  Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). , 2019, Drug discovery today.

[47]  J. Majoral,et al.  Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches , 2017 .

[48]  J. A. Laszlo,et al.  Carboxyl-terminated PAMAM dendrimer interaction with 1-palmitoyl-2-oleoyl phosphocholine bilayers. , 2014, Biochimica et biophysica acta.

[49]  R. Gennis The Structures and Properties of Membrane Lipids , 1989 .