Approximations for the Queue Length Distributions of Time-Varying Many-Server Queues

This paper presents a novel and computationally efficient methodology for approximating the queue length (the number of customers in the system) distributions of time-varying non-Markovian many-server queues (e.g., Gt/Gt/nt queues), where the number of servers (nt) is large. Our methodology consists of two steps. The first step uses phase-type distributions to approximate the general interarrival and service times, thus generating an approximating Pht/Pht/nt queue. The second step develops strong approximation theory to approximate the Pht/Pht/nt queue with fluid and diffusion limits whose mean and variance can be computed using ordinary differential equations. However, by naively representing the Pht/Pht/nt queue as a Markov process by expanding the state space, we encounter the lingering phenomenoneven when the queue is overloaded. Lingering typically occurs when the mean queue length is equal or near the number of servers, however, in this case it also happens when the queue is overloaded and this time...

[1]  J. Reed,et al.  The G/GI/N queue in the Halfin–Whitt regime , 2009, 0912.2837.

[2]  Andreas Willig,et al.  The role of the Weibull distribution in Internet traffic modeling , 2013, Proceedings of the 2013 25th International Teletraffic Congress (ITC).

[3]  B. Nelson,et al.  The Pht/Pht/# Queueing System: Part I—The Single Node , 2004 .

[4]  Barry L. Nelson,et al.  The [Pht/Pht/infinity]K Queueing System: Part II - The Multiclass Network , 2004, INFORMS J. Comput..

[5]  W. Massey,et al.  Dynamic Optimization with Applications to Dynamic Rate , 2010 .

[6]  A. Horváth,et al.  Matching Three Moments with Minimal Acyclic Phase Type Distributions , 2005 .

[7]  Natarajan Gautam,et al.  Critically Loaded Time-Varying Multiserver Queues: Computational Challenges and Approximations , 2013, INFORMS J. Comput..

[8]  Ward Whitt,et al.  The Gt/GI/st+GI many-server fluid queue , 2012, Queueing Syst. Theory Appl..

[9]  Mor Harchol-Balter,et al.  Fluid and diffusion limits for transient sojourn times of processor sharing queues with time varying rates , 2006, Queueing Syst. Theory Appl..

[10]  J. Ou,et al.  Approximating a Cumulative Distribution Function by Generalized Hyperexponential Distributions , 1997, Probability in the Engineering and Informational Sciences.

[11]  Ward Whitt,et al.  Heavy-Traffic Limits for Queues with Many Exponential Servers , 1981, Oper. Res..

[12]  A. Barbour Networks of queues and the method of stages , 1976, Advances in Applied Probability.

[13]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[14]  Ward Whitt,et al.  Fluid Models for Multiserver Queues with Abandonments , 2006, Oper. Res..

[15]  Guodong Pang,et al.  Heavy-traffic limits for many-server queues with service interruptions , 2009, Queueing Syst. Theory Appl..

[16]  Jamol Pender,et al.  Gaussian skewness approximation for dynamic rate multi-server queues with abandonment , 2013, Queueing Syst. Theory Appl..

[17]  William A. Massey,et al.  Variational optimization for call center staffing , 2005, 2005 Richard Tapia Celebration of Diversity in Computing Conference.

[18]  Anatolii A. Puhalskii,et al.  On the $$M_t/M_t/K_t+M_t$$ queue in heavy traffic , 2008, Math. Methods Oper. Res..

[19]  Avishai Mandelbaum,et al.  Strong approximations for Markovian service networks , 1998, Queueing Syst. Theory Appl..

[20]  Mor Harchol-Balter,et al.  Closed form solutions for mapping general distributions to quasi-minimal PH distributions , 2006, Perform. Evaluation.

[21]  Jamol Pender The truncated normal distribution: Applications to queues with impatient customers , 2015, Oper. Res. Lett..

[22]  B. Nelson,et al.  The Pht / Pht / K Queueing System : Part II — The Multiclass Network , 2004 .

[23]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[24]  Mei-Ling Huang,et al.  An Algorithm for Fitting Heavy-Tailed Distributions via Generalized Hyperexponentials , 2012, INFORMS J. Comput..

[25]  P. Glynn On the Markov property of the GI/G/∞ Gaussian limit , 1982, Advances in Applied Probability.

[26]  M. A. Johnson,et al.  An investigation of phase-distribution moment-matching algorithms for use in queueing models , 1991, Queueing Syst. Theory Appl..

[27]  Ward Whitt,et al.  Many-server heavy-traffic limit for queues with time-varying parameters , 2014, 1401.3933.

[28]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[29]  William A. Massey,et al.  A time-varying call center design via lagrangian mechanics , 2009 .

[30]  Stefan Creemers,et al.  G-RAND: A phase-type approximation for the nonstationary G(t)/G(t)/s(t)+G(t) queue , 2014, Perform. Evaluation.

[31]  Jamol Pender,et al.  Poster: skewness variance approximation for dynamic rate MultiServer queues with abandonment , 2011, PERV.

[32]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[33]  Barry L. Nelson,et al.  The Pht/Pht/infinity Queueing System: Part I - The Single Node , 2004, INFORMS J. Comput..

[34]  W. Whitt On the heavy-traffic limit theorem for GI/G/∞ queues , 1982 .

[35]  W. A. Massey,et al.  DYNAMIC PRICING TO CONTROL LOSS SYSTEMS WITH QUALITY OF SERVICE TARGETS , 2009, Probability in the Engineering and Informational Sciences.

[36]  Alexander L. Stolyar,et al.  Queue Lengths and Waiting Times for Multiserver Queues with Abandonment and Retrials , 2002, Telecommun. Syst..

[37]  Stefan Engblom,et al.  Approximations for the Moments of Nonstationary and State Dependent Birth-Death Queues , 2014, ArXiv.

[38]  Lee Highway APPROXIMATION WITH GENERALIZED HYPEREXPONENTIAL DISTRIBUTIONS: WEAK CONVERGENCE RESULTS* , 1986 .

[39]  Jamol Pender NONSTATIONARY LOSS QUEUES VIA CUMULANT MOMENT APPROXIMATIONS , 2014, Probability in the Engineering and Informational Sciences.

[40]  Jamol Pender An analysis of nonstationary coupled queues , 2016, Telecommun. Syst..

[41]  Ward Whitt,et al.  The Physics of the Mt/G/∞ Queue , 1993, Oper. Res..

[42]  William A. Massey,et al.  Dynamic Optimization with Applications to Dynamic Rate Queues , 2010 .

[43]  Avishai Mandelbaum,et al.  Statistical Analysis of a Telephone Call Center , 2005 .

[44]  Anja Feldmann,et al.  Fitting mixtures of exponentials to long-tail distributions to analyze network performance models , 1997, Proceedings of INFOCOM '97.

[45]  Ward Whitt,et al.  Algorithms for Time-Varying Networks of Many-Server Fluid Queues , 2014, INFORMS J. Comput..

[46]  M. Reiman,et al.  The multiclass GI/PH/N queue in the Halfin-Whitt regime , 2000, Advances in Applied Probability.

[47]  PenderJamol The truncated normal distribution , 2015 .

[48]  Ikuo Ishii,et al.  Approximation of probability distribution functions by Coxian distribution to evaluate multimedia systems , 2004, Systems and Computers in Japan.

[49]  Jamol Pender,et al.  Gram Charlier Expansion for Time Varying Multiserver Queues with Abandonment , 2014, SIAM J. Appl. Math..

[50]  T. Kurtz Strong approximation theorems for density dependent Markov chains , 1978 .

[51]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[52]  Tolga Tezcan,et al.  Many-server diffusion limits for G/Ph/n+GI queues , 2010, 1011.2034.