Diagonal and Toeplitz splitting iteration methods for diagonal‐plus‐Toeplitz linear systems from spatial fractional diffusion equations

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[3]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[4]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[5]  J. Kirchner,et al.  Fractal stream chemistry and its implications for contaminant transport in catchments , 2000, Nature.

[6]  Zhong-Zhi Bai,et al.  Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems , 2000, Appl. Math. Comput..

[7]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[8]  Hong Wang,et al.  A fast characteristic finite difference method for fractional advection–diffusion equations , 2011 .

[9]  O. Axelsson Iterative solution methods , 1995 .

[10]  Jianyu Pan,et al.  Approximate Inverse Circulant-plus-Diagonal Preconditioners for Toeplitz-plus-Diagonal Matrices , 2010, SIAM J. Sci. Comput..

[11]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[12]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[13]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[14]  D. Baleanu,et al.  Investigation of the fractional diffusion equation based on generalized integral quadrature technique , 2015 .

[15]  Hong Wang,et al.  An O(N log2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations , 2011, J. Comput. Phys..

[16]  Jerry P. Gollub,et al.  Advanced Physics in the High Schools , 2002 .

[17]  Zhong-Zhi Bai,et al.  Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..

[18]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[19]  Fractional Poisson processes and their representation by infinite systems of ordinary differential equations , 2013, 1310.3161.

[20]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[21]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[22]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[23]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[24]  Martin Vetterli,et al.  Fast Fourier transforms: a tutorial review and a state of the art , 1990 .

[25]  Michael K. Ng,et al.  Preconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations , 2014, SIAM J. Sci. Comput..

[26]  Siu-Long Lei,et al.  A circulant preconditioner for fractional diffusion equations , 2013, J. Comput. Phys..

[27]  M. Ng,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[28]  Xiao-Qing Jin,et al.  Preconditioned iterative methods for fractional diffusion equation , 2014, J. Comput. Phys..

[29]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .