Predictive Removal of Interfacial Defect-Induced Trap States between Titanium Dioxide Nanoparticles via Sub-Monolayer Zirconium Coating

First principles modeling of anatase TiO2 surfaces and their interfacial contacts shows that defect-induced trap states within the band gap arise from intrinsic structural distortions, and these can be corrected by modification with Zr(IV) ions. Experimental testing of these predictions has been undertaken using anatase nanocrystals modified with a range of Zr precursors and characterized using structural and spectroscopic methods. Continuous-wave electron paramagnetic resonance (EPR) spectroscopy revealed that under illumination, nanoparticle–nanoparticle interfacial hole trap states dominate, which are significantly reduced after optimizing the Zr doping. Fabrication of nanoporous films of these materials and charge injection using electrochemical methods shows that Zr doping also leads to improved electron conductivity and mobility in these nanocrystalline systems. The simple methodology described here to reduce the concentration of interfacial defects may have wider application to improving the efficiency of systems incorporating metal oxide powders and films including photocatalysts, photovoltaics, fuel cells, and related energy applications.

[1]  H. Ohta,et al.  Unveiling the Electronic Structure of Grain Boundaries in Anatase with Electron Microscopy and First-Principles Modeling. , 2021, Nano letters.

[2]  M. Messing,et al.  Metal Oxide Nanoparticles , 2021 .

[3]  K. McKenna,et al.  Hole Polaron Migration in Bulk Phases of TiO2 Using Hybrid Density Functional Theory , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[5]  A. Bianchi,et al.  Multi-Walled Carbon Nanotubes Supported Pd(II) Complexes: A Supramolecular Approach towards Single-Ion Oxygen Reduction Reaction Catalysts , 2020, Energies.

[6]  K. McKenna,et al.  First-Principles Modeling of Oxygen-Deficient Anatase TiO2 Nanoparticles , 2020, The Journal of Physical Chemistry C.

[7]  H. Y. Playford,et al.  Variations in the local structure of nano-sized anatase TiO2 , 2020 .

[8]  M. Paganini,et al.  Nitrogen-doped semiconducting oxides. Implications on photochemical, photocatalytic and electronic properties derived from EPR spectroscopy , 2020, Chemical science.

[9]  E. Asmatulu,et al.  Toxicity of metal and metal oxide nanoparticles: a review , 2020, Environmental Chemistry Letters.

[10]  Junwang Tang,et al.  Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances , 2020 .

[11]  Alexandria R. C. Bredar,et al.  Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications , 2020, ACS Applied Energy Materials.

[12]  Hyunjoon Lee,et al.  Selectivity Modulated by Surface Ligands on Cu2O/TiO2 Catalysts for Gas-Phase Photocatalytic Reduction of Carbon Dioxide , 2019, The Journal of Physical Chemistry C.

[13]  K. McKenna,et al.  Electronic Properties of {112} and {110} Twin Boundaries in Anatase TiO2 , 2019, Advanced Theory and Simulations.

[14]  T. Berger,et al.  Particle consolidation and electron transport in anatase TiO2 nanocrystal films. , 2019, ACS applied materials & interfaces.

[15]  K. McKenna,et al.  Screening Doping Strategies To Mitigate Electron Trapping at Anatase TiO2 Surfaces , 2019, The journal of physical chemistry. C, Nanomaterials and interfaces.

[16]  Brandon D. Piercy,et al.  Characterization of Electronic Transport through Amorphous TiO2 Produced by Atomic Layer Deposition , 2019, The Journal of Physical Chemistry C.

[17]  G. Darbha,et al.  The carrier transport properties and photodegradation ability of low temperature synthesized phase pure rutile titanium oxide nanostructured materials , 2019, Materials Chemistry and Physics.

[18]  K. McKenna,et al.  Does Polaronic Self-Trapping Occur at Anatase TiO2 Surfaces? , 2018, The Journal of Physical Chemistry C.

[19]  W. Jaegermann,et al.  The Work Function of TiO2 , 2018, Surfaces.

[20]  Chi-Young Lee,et al.  Enhanced Photocatalysis from Truncated Octahedral Bipyramids of Anatase TiO2 with Exposed {001}/{101} Facets , 2018, ACS omega.

[21]  K. McKenna,et al.  First-Principles Modeling of Polaron Formation in TiO2 Polymorphs. , 2018, Journal of chemical theory and computation.

[22]  Jacques C. Vedrine,et al.  Heterogeneous Catalysis on Metal Oxides , 2017 .

[23]  Ying Li,et al.  Enhancing photocatalytic CO 2 reduction by coating an ultrathin Al 2 O 3 layer on oxygen deficient TiO 2 nanorods through atomic layer deposition , 2017 .

[24]  Jasmina Vidic,et al.  Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties , 2016, Journal of Nanobiotechnology.

[25]  Tiehong Chen,et al.  Unravelling the Efficient Photocatalytic Activity of Boron-induced Ti3+ Species in the Surface Layer of TiO2 , 2016, Scientific Reports.

[26]  D. Schmeißer,et al.  Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy , 2016 .

[27]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[28]  Riley E. Rex,et al.  Imaging Luminescent Traps on Single Anatase TiO2 Crystals: The Influence of Surface Capping on Photoluminescence and Charge Transport , 2015 .

[29]  K. Shankar,et al.  Electron Transport, Trapping and Recombination in Anodic TiO 2 Nanotube Arrays , 2015 .

[30]  J. Robertson,et al.  High-K materials and metal gates for CMOS applications , 2015 .

[31]  G. Thornton,et al.  Defects at oxide surfaces , 2015 .

[32]  K. Shankar,et al.  Majority carrier transport in single crystal rutile nanowire arrays , 2014 .

[33]  G. Pacchioni,et al.  Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation. , 2014, The journal of physical chemistry letters.

[34]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[35]  Zhiqiang Gao,et al.  Electrospray Dense Suspensions of TiO2 Nanoparticles for Dye Sensitized Solar Cells , 2013 .

[36]  D. Fermín,et al.  Charge transport across high surface area metal/diamond nanostructured composites. , 2013, ACS applied materials & interfaces.

[37]  F. Figueiredo,et al.  Electrolytes for solid oxide fuel cells , 2013 .

[38]  Arie Zaban,et al.  All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.

[39]  Stanislaus S. Wong,et al.  Trap states in TiO2 films made of nanowires, nanotubes or nanoparticles: an electrochemical study. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  L. Lv,et al.  Heavy metal removal from water/wastewater by nanosized metal oxides: a review. , 2012, Journal of hazardous materials.

[41]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[42]  M. Paganini,et al.  On the Nature of Reduced States in Titanium Dioxide As Monitored by Electron Paramagnetic Resonance. I: The Anatase Case , 2011 .

[43]  M. Seery,et al.  Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible‐Light Active Anatase Photocatalyst , 2011 .

[44]  A. Selloni,et al.  Bulk and Surface Polarons in Photoexcited Anatase TiO2 , 2011 .

[45]  Priti Tiwana,et al.  Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. , 2011, ACS nano.

[46]  Stanislaus S. Wong,et al.  Photoelectrochemical behaviour of anatase nanoporous films: effect of the nanoparticle organization. , 2010, Nanoscale.

[47]  T. Do,et al.  Shape-controlled synthesis of highly crystalline titania nanocrystals. , 2009, ACS nano.

[48]  Gaetano Granozzi,et al.  The Nature of Defects in Fluorine-Doped TiO2 , 2008 .

[49]  Juan Bisquert,et al.  A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors , 2008 .

[50]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[51]  T. Berger,et al.  An Electrochemical Study on the Nature of Trap States in Nanocrystalline Rutile Thin Films , 2007 .

[52]  R. O’Hayre,et al.  Mott−Schottky and Charge-Transport Analysis of Nanoporous Titanium Dioxide Films in Air , 2007 .

[53]  Hyun Suk Jung,et al.  Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[54]  Jerzy Walendziewski,et al.  Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents , 2005 .

[55]  J. Yates,et al.  Light-induced charge separation in anatase TiO2 particles. , 2005, The journal of physical chemistry. B.

[56]  F. Fabregat‐Santiago,et al.  Electronic conductivity in nanostructured TiO2 films permeated with electrolyte , 2003 .

[57]  Michael Grätzel,et al.  Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide , 2002 .

[58]  Juan Bisquert,et al.  Decoupling of Transport, Charge Storage, and Interfacial Charge Transfer in the Nanocrystalline TiO2/Electrolyte System by Impedance Methods , 2002 .

[59]  K. Yeung,et al.  EPR Study of the Surface Characteristics of Nanostructured TiO2 under UV Irradiation , 2001 .

[60]  E. Sudoł,et al.  XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation , 2001 .

[61]  T. Dittrich Porous TiO2: Electron Transport and Application to Dye Sensitized Injection Solar Cells , 2000 .

[62]  Frank E. Osterloh,et al.  Heterogeneous Photocatalysis , 2021 .

[63]  Banfield,et al.  Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2 , 1998 .

[64]  L. Kavan,et al.  Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .

[65]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[66]  M. Grätzel,et al.  EPR study of hydrated anatase under UV irradiation , 1987 .