On the error distribution for randomly-shifted lattice rules

Randomized quasi-Monte Carlo (RQMC) methods estimate the expectation of a random variable by the average of n dependent realizations of it. In general, due to the strong dependence, the estimation error may not obey a central limit theorem. Analysis of RQMC methods have so far focused mostly on the convergence rates of asymptotic worst-case error bounds and variance bounds, when n → ∞, but little is known about the limiting distribution of the error. Here we examine this limiting distribution for the special case of a randomly-shifted lattice rule, when the integrand is smooth. We start with simple one-dimensional functions, where we show that the limiting distribution is uniform over a bounded interval if the integrand is non-periodic, and has a square root form over a bounded interval if the integrand is periodic. In higher dimensions, for linear functions, the distribution function of the properly standardized error converges to a spline of degree equal to the dimension.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  Pierre L’Ecuyer,et al.  Polynomial Integration Lattices , 2004 .

[3]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[4]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[5]  P. L’Ecuyer,et al.  A Comparison of Monte Carlo, Lattice Rules and Other Low-Discrepancy Point Sets , 2000 .

[6]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[7]  Fred J. Vermolen,et al.  Numerical Methods in Scientific Computing , 2006 .

[8]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[9]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[10]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[11]  Spline Notation Applied to a Volume Problem , 1979 .

[12]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[13]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[14]  Wei-Liem Loh On the asymptotic distribution of scrambled net quadrature , 2003 .

[15]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[16]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[17]  Pierre L'Ecuyer,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .

[18]  Bruno Tuffin,et al.  Variance reduction order using good lattice points in monte carlo methods , 1998, Computing.