On the error distribution for randomly-shifted lattice rules
暂无分享,去创建一个
[1] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[2] Pierre L’Ecuyer,et al. Polynomial Integration Lattices , 2004 .
[3] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[4] Pierre L'Ecuyer,et al. Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .
[5] P. L’Ecuyer,et al. A Comparison of Monte Carlo, Lattice Rules and Other Low-Discrepancy Point Sets , 2000 .
[6] Pierre L'Ecuyer,et al. Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.
[7] Fred J. Vermolen,et al. Numerical Methods in Scientific Computing , 2006 .
[8] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[9] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[10] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[11] Spline Notation Applied to a Volume Problem , 1979 .
[12] A. Owen. A Central Limit Theorem for Latin Hypercube Sampling , 1992 .
[13] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[14] Wei-Liem Loh. On the asymptotic distribution of scrambled net quadrature , 2003 .
[15] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[16] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[17] Pierre L'Ecuyer,et al. Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .
[18] Bruno Tuffin,et al. Variance reduction order using good lattice points in monte carlo methods , 1998, Computing.