A Generic Framework and Library for Exploration of Small Multiples through Interactive Piling

Small multiples are miniature representations of visual information used generically across many domains. Handling large numbers of small multiples imposes challenges on many analytic tasks like inspection, comparison, navigation, or annotation. To address these challenges, we developed a framework and implemented a library called PILlNG.JS for designing interactive piling interfaces. Based on the piling metaphor, such interfaces afford flexible organization, exploration, and comparison of large numbers of small multiples by interactively aggregating visual objects into piles. Based on a systematic analysis of previous work, we present a structured design space to guide the design of visual piling interfaces. To enable designers to efficiently build their own visual piling interfaces, PILlNG.JS provides a declarative interface to avoid having to write low-level code and implements common aspects of the design space. An accompanying GUI additionally supports the dynamic configuration of the piling interface. We demonstrate the expressiveness of PILlNG.JS with examples from machine learning, immunofluorescence microscopy, genomics, and public health.

[1]  Lars E. Borm,et al.  Spatial organization of the somatosensory cortex revealed by osmFISH , 2018, Nature Methods.

[2]  John T. Stasko,et al.  Effectiveness of Animation in Trend Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[3]  Takeo Igarashi,et al.  Bubble clusters: an interface for manipulating spatial aggregation of graphical objects , 2007, UIST.

[4]  Roel Vertegaal,et al.  DisplayStacks: interaction techniques for stacks of flexible thin-film displays , 2012, CHI.

[5]  George W. Furnas,et al.  Critical zones in desert fog: aids to multiscale navigation , 1998, UIST '98.

[6]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[7]  Jean-Daniel Fekete,et al.  Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks , 2015, Comput. Graph. Forum.

[8]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[9]  Nathan Lenssen,et al.  Improvements in the GISTEMP Uncertainty Model , 2019, Journal of Geophysical Research: Atmospheres.

[10]  Thomas W. Malone,et al.  How do people organize their desks?: Implications for the design of office information systems , 1983, TOIS.

[11]  Hanspeter Pfister,et al.  HiPiler: Visual Exploration of Large Genome Interaction Matrices with Interactive Small Multiples , 2017, bioRxiv.

[12]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[13]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[14]  Jarke J. van Wijk,et al.  Small Multiples, Large Singles: A New Approach for Visual Data Exploration , 2013, Comput. Graph. Forum.

[15]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[16]  Ravin Balakrishnan,et al.  Keepin' it real: pushing the desktop metaphor with physics, piles and the pen , 2006, CHI.

[17]  Hwan-Gue Cho,et al.  A compact photo browser for smartphone imaging system with content-sensitive overlapping layout , 2012, ICUIMC '12.

[18]  Sriram Subramanian,et al.  Interacting with piles of artifacts on digital tables , 2006, AVI '06.

[19]  Cláudio T. Silva,et al.  VisTrails: enabling interactive multiple-view visualizations , 2005, VIS 05. IEEE Visualization, 2005..

[20]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[21]  Daniel E. Rose,et al.  Content awareness in a file system interface: implementing the “pile” metaphor for organizing information , 1993, SIGIR.

[22]  Steven Franconeri,et al.  The Connected Scatterplot for Presenting Paired Time Series , 2016, IEEE Transactions on Visualization and Computer Graphics.

[23]  John T. Stasko,et al.  OnSet: A Visualization Technique for Large-scale Binary Set Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[24]  Martin Wattenberg,et al.  Embedding Projector: Interactive Visualization and Interpretation of Embeddings , 2016, ArXiv.

[25]  T. J. Jankun-Kelly,et al.  Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface , 2001, IEEE Trans. Vis. Comput. Graph..

[26]  Paul Dourish,et al.  Social navigation as a model for usable security , 2005, SOUPS '05.

[27]  Timo Ropinski,et al.  Taxonomy and Usage Guidelines for Glyph-based Medical Visualization , 2008, SimVis.

[28]  Xiaojun Bi,et al.  WallTop: Managing Overflowing Windows on a Large Display , 2014, Hum. Comput. Interact..

[29]  Jessie Kennedy,et al.  BayesPiles , 2018, ACM Trans. Intell. Syst. Technol..

[30]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[31]  James D. Hollan,et al.  Computationally-Enriched 'Piles' for Managing Digital Photo Collections , 2004, 2004 IEEE Symposium on Visual Languages - Human Centric Computing.

[32]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[33]  Richard Mander,et al.  A “pile” metaphor for supporting casual organization of information , 1992, CHI.

[34]  Camilla Forsell,et al.  Interaction Support for Visual Comparison Inspired by Natural Behavior , 2012, IEEE Transactions on Visualization and Computer Graphics.

[35]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[36]  James D. Hollan,et al.  Spatial Tools for Managing Personal Information Collections , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[37]  Alexandre Bergel,et al.  A domain-specific language to visualize software evolution , 2018, Inf. Softw. Technol..

[38]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[39]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[40]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[41]  Pierre Dragicevic,et al.  Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[42]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[43]  Denis Lalanne,et al.  A Qualitative Study on the Exploration of Temporal Changes in Flow Maps with Animation and Small‐Multiples , 2012, Comput. Graph. Forum.

[44]  Max Mühlhäuser,et al.  Interaction techniques for hybrid piles of documents on interactive tabletops , 2010, CHI Extended Abstracts.

[45]  Mikkel Rønne Jakobsen,et al.  Piles, tabs and overlaps in navigation among documents , 2010, NordiCHI.

[46]  Hanspeter Pfister,et al.  Pattern-Driven Navigation in 2D Multiscale Visualizations with Scalable Insets , 2018, bioRxiv.

[47]  STEVE WHITTAKER,et al.  The character, value, and management of personal paper archives , 2001, TCHI.