Biodeterioration of concrete by the fungus Fusarium

The bacterial genus Thiobacillus is known for its ability to degrade concrete. A fungus was isolated from concrete samples and identified as a Fusarium species. Our data indicate that fungi also play an important role in the deterioration of concrete. We observed both weight loss and release of calcium when concrete was exposed to our isolate. Fungal degradation proceeded more rapidly than Thiobacillus-mediated degradation. Our study suggests that interaction between fungal metabolites and calcium in the concrete results in the formation of soluble calcium organic complexes.

[1]  R. Arnold,et al.  Control of Thiobacillus by means of microbial competition: Implications for corrosion of concrete sewers , 1995 .

[2]  J. Etherington,et al.  The nitrogen and sulphur cycles , 1988 .

[3]  H. Nakagawa,et al.  Fiber reinforced concrete: developments and applications to buildings , 1993 .

[4]  C. Min,et al.  AFFECTION OF PROCESS PARAMETERS ON THE STRUCTURE AND PROPERTIES OF Al_2O_3/Al COMPOSITE , 1995 .

[5]  M. Roman,et al.  The role of microbial biofilms in deterioration of space station candidate materials. , 1998, International biodeterioration & biodegradation.

[6]  D. Allsopp,et al.  Microbial deterioration of building stone - a review. , 1993 .

[7]  Cd Parker,et al.  THE CORROSION OF CONCRETE , 1945 .

[8]  G. Blomquist,et al.  Identification of volatile metabolites from five fungal species cultivated on two media , 1995, Applied and environmental microbiology.

[9]  Wolfgang Sand,et al.  Biotest system for rapid evaluation of concrete resistance to sulfur-oxidizing bacteria. , 1987 .

[10]  R. Goodacre,et al.  Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectrometry , 1991, Applied and environmental microbiology.

[11]  Fernando M.A. Henriques,et al.  Proceedings of the 7th International Congress on Deterioration and Conservation of Stone , 1992 .

[12]  Wolfgang Sand,et al.  THE IMPACT OF MICROORGANISMS - ESPECIALLY NITRIC ACID PRODUCING BACTERIA - ON THE DETERIORATION OF NATURAL STONES , 1991 .

[13]  C. D. PARKER,et al.  Species of Sulphur Bacteria Associated with the Corrosion of Concrete , 1947, Nature.

[14]  B. Prieto,et al.  Colonization by lichens of granite dolmens in Galicia (NW Spain) , 1994 .

[15]  T. Ford Aquatic microbiology : an ecological approach , 1995 .

[16]  O. Tuovinen,et al.  The Genera Thiobacillus and Thiomicrospira , 1981 .

[17]  Delwiche Cc The Nitrogen Cycle , 1970, Soil Microbiology.

[18]  Wolfgang Sand,et al.  Thiobacilli of the Corroded Concrete Walls of the Hamburg Sewer System , 1983 .

[19]  Wolfgang Sand,et al.  Importance of Hydrogen Sulfide, Thiosulfate, and Methylmercaptan for Growth of Thiobacilli during Simulation of Concrete Corrosion , 1987, Applied and environmental microbiology.

[20]  Brenda J. Little,et al.  Microbiologically Influenced Corrosion Testing , 1994 .

[21]  R. Gross,et al.  Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments , 1993 .

[22]  Wolfgang Sand,et al.  Concrete corrosion in the Hamburg Sewer system , 1984 .

[23]  Cd Parker,et al.  THE CORROSION OF CONCRETE: 2. THE FUNCTION OF THIOBACILLUS CONCRETIVORUS (NOV. SPEC.) IN THE CORROSION OF CONCRETE EXPOSED TO ATMOSPHERES CONTAINING HYDROGEN SULPHIDE. , 1945 .

[24]  J. Ortega-Calvo,et al.  Microbial communities in weathered sandstones: the case of Carrascosa del Campo church, Spain , 1995 .

[25]  Joseph S. Devinny,et al.  Corrosion Monitoring and Control in Concrete Sewer Pipes , 1991 .

[26]  E. Lefebvre-Drouet,et al.  Dissolution de differents oxyhydroxydes de fer par voie chimique et par voie biologique: Importance des bacteries reductrices , 1995 .

[27]  Jie Gu,et al.  Fiber-reinforced polymeric composites are susceptible to microbial degradation , 1997, Journal of Industrial Microbiology and Biotechnology.

[28]  W. Sand,et al.  Simulation of concrete corrosion in a strictly controlled H2S-breeding chamber , 1983 .

[29]  T. Ford,et al.  Microbial growth on fiber reinforced composite materials , 1996 .

[30]  G. Holdren,et al.  Pollutant effects on stone monuments. , 1981, Environmental science & technology.

[31]  C. Kulpa,et al.  Involvement of Sulfur-Oxidizing Bacteria in Concrete Deterioration , 1990, SP-122: Paul Klieger Symposium on Performance of Concrete.

[32]  F. Lea The chemistry of cement and concrete , 1970 .

[33]  C D PARKER,et al.  The oxidation of inorganic compounds of sulphur by various sulphur bacteria. , 1953, Journal of general microbiology.

[34]  D. Kelly Introduction to the Chemolithotrophic Bacteria , 1981 .

[35]  V. Somlev,et al.  Anaerobic corrosion and bacterial sulfate reduction: Application for the purification of industrial wastewater , 1994 .

[36]  J. Ortega-Calvo,et al.  Microbial degradation of phenanthrene in two European cathedrals , 1997 .

[37]  C. Evans,et al.  Oxalate production by fungi : its role in pathogenicity and ecology in the soil environment , 1996 .

[38]  J. Lorenzo,et al.  Microbial communities and alteration processes in monuments at Alcala de Henares, Spain , 1995 .

[39]  T. Ford,et al.  Susceptibility of electronic insulating polyimides to microbial degradation , 1996 .

[40]  B. A. Martin Magnesium anode performance , 1987 .

[41]  G. Gómez-Alarcón,et al.  Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments , 1992 .

[42]  S. Takao Organic acid production by Basidiomycetes. I. Screening of acid-producing strains. , 1965, Applied microbiology.

[43]  F. Eckhardt Microorganisms and weathering of a sandstone monument , 1978 .

[44]  J. Costerton,et al.  The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. , 1984, Canadian journal of microbiology.

[45]  Arthur Harry Walters,et al.  Biodeterioration of materials , 1972 .