Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator

State Key Lab for Mesoscopic Physics, Department of Physics, Peking University, P. R. China(Dated: June 13, 2012)We propose a hybrid photonic-plasmonic resonant structure which consists of a metal nanoparticle(MNP) and a whispering gallery mode (WGM) microcavity. It is found that the hybrid mode enablesa strong interaction between the light and matter, and the single-atom cooperativity is enhanced bymore than two orders of magnitude compared to that in a bare WGM microcavity. This remarkableimprovement originates from two aspects: (1) the MNP offers a highly enhanced local field in thevicinity of an emitter, and (2), surprisingly, the high-Q property of WGMs can be maintained inthe presence of the MNP. Thus the present system has great advantages over a single microcavityor a single MNP, and holds great potential in quantum optics, nonlinear optics and highly sensitivebiosening.

[1]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[2]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[3]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[4]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[5]  Oliver Benson,et al.  One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. , 2008, Nano letters.

[6]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[7]  U. Banin,et al.  Cavity QED with semiconductor nanocrystals , 2006 .

[8]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[9]  Oliver Benson,et al.  Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. , 2010, Nano letters.

[10]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[11]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[12]  Peter Lodahl,et al.  Strongly modified plasmon-matter interaction with mesoscopic quantum emitters , 2010, 1011.5669.

[13]  G. Bryant,et al.  Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability. , 2008, Nano letters.

[14]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[15]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[16]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[17]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[18]  H. J. Kimble,et al.  Strong interactions of single atoms and photons near a dielectric boundary , 2010, 1011.0740.

[19]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[20]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[21]  Yan Li,et al.  Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering , 2011, 1106.1479.

[22]  Wang Yao,et al.  Theory of control of the spin-photon interface for quantum networks. , 2005, Physical review letters.

[23]  A. Polman,et al.  Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: Dipolar versus higher-order modes , 2007 .

[24]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[25]  Daniel Ratchford,et al.  Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. , 2011, Nano letters.

[26]  T. Klar,et al.  Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. , 2005, Nano letters.

[27]  Guang-Can Guo,et al.  Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics , 2007 .

[28]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[29]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[30]  Wu-Ming Liu,et al.  Spin squeezing in a generalized one-axis twisting model , 2009, 0904.0496.

[31]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[32]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[33]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[34]  Edo Waks,et al.  Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter , 2010 .

[35]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[36]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[37]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[38]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[39]  G. Zumofen,et al.  Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. , 2007, Physical review letters.

[40]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[41]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[42]  Zheng-Fu Han,et al.  High-Q exterior whispering-gallery modes in a metal-coated microresonator. , 2010, Physical review letters.

[43]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[44]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.