Two minimal Tat translocases in Bacillus

Activity of the Tat machinery for protein transport across the inner membrane of Escherichia coli and the chloroplast thylakoidal membrane requires the presence of three membrane proteins: TatA, TatB and TatC. Here, we show that the Tat machinery of the Gram‐positive bacterium Bacillus subtilis is very different because it contains at least two minimal Tat translocases, each composed of one specific TatA and one specific TatC component. A third, TatB‐like component is apparently not required. This implies that TatA proteins of B. subtilis perform the functions of both TatA and TatB of E. coli and thylakoids. Notably, the two B. subtilis translocases named TatAdCd and TatAyCy both function as individual, substrate‐specific translocases for the twin‐arginine preproteins PhoD and YwbN, respectively. Importantly, these minimal TatAC translocases of B. subtilis are representative for the Tat machinery of the vast majority of Gram‐positive bacteria, Streptomycetes being the only known exception with TatABC translocases.

[1]  B. Berks,et al.  Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. , 2002, Journal of molecular biology.

[2]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[3]  J. Anné,et al.  The importance of the Tat-dependent protein secretion pathway in Streptomyces as revealed by phenotypic changes in tat deletion mutants and genome analysis. , 2004, Microbiology.

[4]  K. Cline,et al.  Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC–Hcf106 complex before Tha4-dependent transport , 2001, The Journal of cell biology.

[5]  K. Cline,et al.  A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase , 2002, The Journal of cell biology.

[6]  Frank Sargent,et al.  The Tat protein translocation pathway and its role in microbial physiology. , 2003, Advances in microbial physiology.

[7]  J. Mathers,et al.  Identification of key regions within the Escherichia coli TatAB subunits , 2003, FEBS letters.

[8]  B. Berks,et al.  Overlapping functions of components of a bacterial Sec‐independent protein export pathway , 1998, The EMBO journal.

[9]  R. Wetzker,et al.  Sequence-specific Binding of prePhoD to Soluble TatAd Indicates Protein-mediated Targeting of the Tat Export in Bacillus subtilis* , 2003, Journal of Biological Chemistry.

[10]  S. Bron,et al.  Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. , 1998, Genes & development.

[11]  Gunnar von Heijne,et al.  Competition between Sec‐ and TAT‐dependent protein translocation in Escherichia coli , 1999, The EMBO journal.

[12]  M. Saier,et al.  Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system , 2002, Archives of Microbiology.

[13]  A. Bolhuis,et al.  Subunit interactions in the twin‐arginine translocase complex of Escherichia coli , 2000, FEBS letters.

[14]  K. Cline,et al.  Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. , 2001, Biochimica et biophysica acta.

[15]  Guenter Blobel Protein Targeting , 2000, Bioscience reports.

[16]  J. Anné,et al.  Twin-Arginine Translocation Pathway inStreptomyces lividans , 2001, Journal of bacteriology.

[17]  A. Bolhuis,et al.  Protein targeting by the twin-arginine translocation pathway , 2001, Nature Reviews Molecular Cell Biology.

[18]  Matthias Müller,et al.  Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. , 2003, Molecular cell.

[19]  A. Sommer,et al.  Purification and Properties of a Novel Chloroplast Stromal Peptidase , 1998, The Journal of Biological Chemistry.

[20]  I. Porcelli,et al.  The Escherichia coli twin‐arginine translocase: conserved residues of TatA and TatB family components involved in protein transport , 2003, FEBS letters.

[21]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[22]  Frens Pries,et al.  Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis * , 2002, The Journal of Biological Chemistry.

[23]  Jörg P. Müller,et al.  The Twin-arginine Signal Peptide of PhoD and the TatAd/Cd Proteins of Bacillus subtilis Form an Autonomous Tat Translocation System* , 2002, The Journal of Biological Chemistry.

[24]  E. Hartmann,et al.  Prokaryotic Utilization of the Twin-Arginine Translocation Pathway: a Genomic Survey , 2003, Journal of bacteriology.

[25]  H. Lill,et al.  Transport of cytochrome c derivatives by the bacterial Tat protein translocation system , 2001, Molecular microbiology.

[26]  Michael Hecker,et al.  Phosphate Starvation-Inducible Proteins ofBacillus subtilis: Proteomics and Transcriptional Analysis , 2000, Journal of bacteriology.

[27]  W. Schumann,et al.  A xylose-inducible Bacillus subtilis integration vector and its application. , 1996, Gene.

[28]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.