A Quick Maximum Power Point Tracking Method Using an Embedded Learning Algorithm for Photovoltaics on Roads

[1]  Hocine Belmili,et al.  A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems , 2015 .

[2]  Tomonobu Senjyu,et al.  Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller , 2003, IEEE Trans. Ind. Electron..

[3]  Masashi Sugiyama,et al.  Modal Regression via Direct Log-Density Derivative Estimation , 2016, ICONIP.

[4]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[5]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[6]  Koichiro Yamauchi,et al.  Minimum Modal Regression , 2018, ICPRAM.

[7]  Koichiro Yamauchi,et al.  Incremental learning on a budget and its application to quick maximum power point tracking of photovoltaic systems , 2012, The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems.

[8]  Moulay Fatima,et al.  A detailed modeling of photovoltaic module using MATLAB , 2014 .

[9]  A. Boehringer Self-Adapting dc Converter for Solar Spacecraft Power Supply Selbstanpassender Gleichstromwandler für die Energieversorgung eines Sonnensatelliten , 1968, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Toshihiko Noguchi,et al.  Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system , 2002, IEEE Trans. Ind. Electron..

[11]  P.L. Chapman,et al.  Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques , 2007, IEEE Transactions on Energy Conversion.

[12]  Ramazan Akkaya,et al.  DSP implementation of a PV system with GA-MLP-NN based MPPT controller supplying BLDC motor drive , 2007 .

[13]  Yi-Hua Liu,et al.  A PSO-based MPPT algorithm for photovoltaic systems subject to inhomogeneous insolation , 2012, The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems.

[14]  N. Rajasekar,et al.  Application of Modified Particle Swarm Optimization for Maximum Power Point Tracking under Partial Shading Condition , 2014 .

[15]  Sang Lyul Min,et al.  LRFU: A Spectrum of Policies that Subsumes the Least Recently Used and Least Frequently Used Policies , 2001, IEEE Trans. Computers.

[16]  N. Jenkins,et al.  A model of PV generation suitable for stability analysis , 2004, IEEE Transactions on Energy Conversion.