Optimization in Choosing Gimbal Axis Orientations of a CMG Attitude Control System

Control momentum gyros (CMGs) are often chosen for satellites where high attitude precision and torque are needed while using minimal input power. Control of these types of systems is complicated and is directly dependent on the number of actuators and their gimbal axis orientations with respect to the satellite body frame. This paper discusses the potential benets of optimizing these gimbal axis congurations

[1]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[2]  Haruhisa Kurokawa,et al.  CONSTRAINED STEERING LAW OF PYRAMID-TYPE CONTROL MOMENT GYROS AND GROUND TESTS , 1997 .

[3]  Haruhisa Kurokawa A Geometric Study of Single Gimbal Control Moment Gyros , 1998 .

[4]  K. Ford,et al.  Singular Direction Avoidance Steering for Control-Moment Gyros , 1998 .

[5]  B. Wie,et al.  Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros , 2000 .

[6]  A.A. Rodriguez,et al.  A preferred trajectory tracking steering law for spacecraft with redundant CMGs , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[7]  G. Margulies Geometric Theory of Single-Gimbal Control Moment Gyro System , 1978 .

[8]  Srinivas R. Vadali,et al.  An inverse-free technique for attitude control of spacecraft using CMGs , 1996 .

[9]  Haim Weiss,et al.  Quarternion feedback regulator for spacecraft eigenaxis rotations , 1989 .

[10]  Srinivas R. Vadali,et al.  Preferred gimbal angles for single gimbal control moment gyros , 1989 .

[11]  M. D. Kuhns,et al.  Singularity avoidance control laws for a multiple CMG spacecraft attitude control system , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[12]  Bong Wie,et al.  Rapid Multitarget Acquisition and Pointing Control of Agile Spacecraft , 2000 .

[13]  Jianbo Lu,et al.  Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints , 1994 .