Effect of nonstoichiometry on anisotropy of elastic properties of disordered cubic zirconium carbide ZrC

[1]  A. Bahgat Radwan,et al.  Investigating the Properties of Electrodeposited of Ni-P-ZrC Nanocomposite Coatings , 2021, ACS Omega.

[2]  G. Hilmas,et al.  From thermal conductive to thermal insulating: Effect of carbon vacancy content on lattice thermal conductivity of ZrC , 2021 .

[3]  A. ul-Hamid,et al.  Microstructure, properties and applications of Zr-carbide, Zr-nitride and Zr-carbonitride coatings: a review , 2020, Materials Advances.

[4]  William E Lee,et al.  On the stoichiometry of zirconium carbide , 2020, Scientific Reports.

[5]  J. M. McMahon,et al.  Temperature-dependent mechanical properties of ZrC and HfC from first principles , 2020, Journal of Materials Science.

[6]  G. Galevsky,et al.  Application of zirconium carbide: assessment, determination of dominant trends and prospects , 2018, IOP Conference Series: Materials Science and Engineering.

[7]  X. Zu,et al.  A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC , 2017, Scientific Reports.

[8]  Bin Liu,et al.  Theoretical investigations of the effects of ordered carbon vacancies in ZrC1−x on phase stability and thermo-mechanical properties , 2016 .

[9]  R. Harrison,et al.  Processing and properties of ZrC, ZrN and ZrCN ceramics: A review , 2016 .

[10]  Q. Zeng,et al.  Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of zirconium carbides: a first-principles study. , 2015, Physical chemistry chemical physics : PCCP.

[11]  M. V. Nelidov,et al.  Promising Fuel Materials for Thermionic Nuclear Power Installations , 2014 .

[12]  Y. Katoh,et al.  Properties of Zirconium Carbide for Nuclear Fuel Applications , 2013, Comprehensive Nuclear Materials.

[13]  Bo Xu,et al.  Microscopic theory of hardness and design of novel superhard crystals , 2012 .

[14]  Haiquan Hu,et al.  Electronic structure and elastic constants of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys: A first-principles study , 2011 .

[15]  Dianzhong Li,et al.  Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses , 2011, 1102.4063.

[16]  Y. Katoh,et al.  Effects of fast neutron irradiation on zirconium carbide , 2010 .

[17]  P. Turchi,et al.  First-principles study of elastic and stability properties of ZrC–ZrN and ZrC–TiC alloys , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Jun Zhu,et al.  Thermodynamic properties of cubic ZrC under high pressure from first-principles calculations , 2009 .

[19]  N. I. Ostrosablin,et al.  Anisotropy of elastic properties of materials , 2008 .

[20]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[21]  B. Bouhafs,et al.  First-principles calculations on the electronic structure of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys , 2005 .

[22]  Zhigang Wu,et al.  Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles , 2004, cond-mat/0412374.

[23]  Shaoqing Wang,et al.  First-principles calculations of the elastic properties of ZrC and ZrN , 2004 .

[24]  T. Koch,et al.  Hardness and elastic properties of Ti(CxN1-x), Zr(CxN1-x) and Hf(CxN1-x) , 2000 .

[25]  H. Prask,et al.  Calculation of Single-Crystal Elastic Constants for Cubic Crystal Symmetry from Powder Diffraction Data , 1998 .

[26]  David M. Teter,et al.  Computational Alchemy: The Search for New Superhard Materials , 1998 .

[27]  A. Guillermet Analysis of thermochemical properties and phase stability in the zirconium-carbon system , 1995 .

[28]  P. Ettmayer,et al.  Solid state properties of group IVb carbonitrides , 1995 .

[29]  D. Butt,et al.  The U─Zr─C Ternary Phase Diagram above 2473 K , 1993 .

[30]  Y. Kumashiro,et al.  The Vickers micro-hardness of NbC, ZrC and TaC single crystals up to 1500°C , 1982 .

[31]  Richard Warren,et al.  Measurement of the fracture properties of brittle solids by hertzian indentation , 1978 .

[32]  Y. Milman,et al.  Effect of temperature on the strength characteristics of zirconium carbide , 1976 .

[33]  R. K. Maccrone,et al.  Thermal expansion, Debye temperature and Gruneisen constant of carbides and nitrides , 1974 .

[34]  V. Baranov,et al.  The temperature dependence of the elastic constants of nonstoichiometric zirconium carbides , 1973 .

[35]  D. Kohlstedt The temperature dependence of microhardness of the transition-metal carbides , 1973 .

[36]  G. A. Rymashevskii,et al.  Temperature threshold of brittle failure in interstitial phases , 1973 .

[37]  H. L. Brown,et al.  Elastic Properties of Zirconium Carbide , 1966, November 1.

[38]  L. Graham,et al.  Low-Temperature Elastic Properties of ZrC and TiC , 1966 .

[39]  R. V. Sara THE SYSTEM ZIRCONIUM-CARBON , 1965 .

[40]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[41]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[42]  G. Hilmas,et al.  Processing and room temperature mechanical properties of a zirconium carbide ceramic , 2020 .

[43]  A. Magerl,et al.  Disorder and Order in Strongly Nonstoichiometric Compounds , 2001 .

[44]  O. L. Anderson,et al.  2 - Determination and Some Uses of Isotropic Elastic Constants of Polycrystalline Aggregates Using Single-Crystal Data , 1965 .