Well-Quasi-Order for Permutation Graphs Omitting a Path and a Clique

We consider well-quasi-order for classes of permutation graphs which omit both a path and a clique. Our principle result is that the class of permutation graphs omitting $P_5$ and a clique of any size is well-quasi-ordered. This is proved by giving a structural decomposition of the corresponding permutations. We also exhibit three infinite antichains to show that the classes of permutation graphs omitting $\{P_6,K_6\}$, $\{P_7,K_5\}$, and $\{P_8,K_4\}$ are not well-quasi-ordered.

[1]  Vadim V. Lozin,et al.  Labelled Induced Subgraphs and Well-Quasi-Ordering , 2015, Order.

[2]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[3]  Michael H. Albert,et al.  Generating and Enumerating 321-Avoiding and Skew-Merged Simple Permutations , 2013, Electron. J. Comb..

[4]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[5]  Vincent Vatter Small permutation classes , 2007, 0712.4006.

[6]  Vincent Vatter,et al.  Profile Classes and Partial Well-Order for Permutations , 2002, Electron. J. Comb..

[7]  Vincent Vatter,et al.  On Partial Well-Order for Monotone Grid Classes of Permutations , 2009, Order.

[8]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[9]  Robert Brignall,et al.  Grid classes and partial well order , 2009, J. Comb. Theory, Ser. A.

[10]  M. Atkinson,et al.  Geometric grid classes of permutations , 2011, 1108.6319.

[11]  Vincent Vatter,et al.  Grid Classes and the Fibonacci Dichotomy for Restricted Permutations , 2006, Electron. J. Comb..

[12]  Vadim V. Lozin,et al.  Bipartite induced subgraphs and well‐quasi‐ordering , 2010, J. Graph Theory.

[13]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[14]  Vadim V. Lozin,et al.  Two forbidden induced subgraphs and well-quasi-ordering , 2011, Discret. Math..

[15]  Mike D. Atkinson,et al.  Simple permutations and pattern restricted permutations , 2005, Discret. Math..

[16]  M. Albert,et al.  Subclasses of the separable permutations , 2010, 1007.1014.

[17]  Maximilian M. Murphy,et al.  Restricted permutations, antichains, atomic classes and stack sorting , 2003 .

[18]  Guoli Ding,et al.  Subgraphs and well-quasi-ordering , 1992, J. Graph Theory.

[19]  Nik Ruskuc,et al.  Inflations of geometric grid classes of permutations , 2012, 1202.1833.