Bismut type derivative formulae and gradient estimate for multiplicative SDEs with fractional noises

[1]  K. Elworthy,et al.  Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.

[2]  Log‐Harnack inequalities for Markov semigroups generated by non‐local Gruschin type operators , 2017, 1702.08123.

[3]  Feng-Yu Wang Derivative Formula and Harnack Inequality for SDEs Driven by Lévy Processes , 2011, 1104.5531.

[4]  I. Nourdin,et al.  On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion , 2006 .

[5]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[6]  Feng-Yu Wang Derivative Formula and Gradient Estimates for Gruschin Type Semigroups , 2011, 1109.6738.

[7]  Xiliang Fan Harnack-Type Inequalities and Applications for SDE Driven by Fractional Brownian Motion , 2014 .

[8]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[9]  Esko Valkeila,et al.  Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion , 2001 .

[10]  A. Guillin,et al.  Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality , 2011, 1103.2817.

[11]  Xiliang Fan Harnack inequality and derivative formula for SDE driven by fractional Brownian motion , 2013, 1310.5932.

[12]  Litan Yan The fractional derivative for fractional Brownian local time with Hurst index large than 1 / 2 , 2016 .

[13]  Marco Ferrante,et al.  Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H , 2006 .

[14]  David Nualart,et al.  Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion , 2009 .

[15]  Xicheng Zhang,et al.  Stochastic flows and Bismut formulas for stochastic Hamiltonian systems , 2010 .

[16]  Feng-Yu Wang,et al.  Log-Harnack inequality for Gruschin type semigroups , 2012, 1206.0583.

[17]  Terry Lyons Di erential equations driven by rough signals , 1998 .

[18]  Zhao Dong,et al.  Ergodicity of linear SPDE driven by Lévy noise , 2010, J. Syst. Sci. Complex..

[19]  D. Nualart,et al.  Differential equations driven by fractional Brownian motion , 2002 .

[20]  O. Mazet,et al.  Stochastic Calculus with Respect to Gaussian Processes , 2001 .

[21]  N. Pillai,et al.  Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion , 2009, 0909.4505.

[22]  María J. Garrido-Atienza,et al.  Retarded evolution systems driven by fractional Brownian motion with Hurst parameter H>1/2 , 2014 .

[23]  C. Yuan,et al.  Bismut formulae and applications for functional SPDEs , 2011, 1110.5150.

[24]  Salah Hajji,et al.  Functional differential equations driven by a fractional Brownian motion , 2011, Comput. Math. Appl..

[25]  A. Neuenkirch,et al.  Delay equations driven by rough paths , 2007, 0711.2633.

[26]  I︠U︡lii︠a︡ S. Mishura Stochastic Calculus for Fractional Brownian Motion and Related Processes , 2008 .

[27]  Feng-Yu Wang,et al.  Derivative formula and applications for degenerate diffusion semigroups , 2011, 1107.0096.

[28]  Formulae for the derivatives of degenerate diffusion semigroups , 2006 .

[29]  A. Ayache,et al.  Multiparameter multifractional Brownian motion: Local nondeterminism and joint continuity of the local times , 2011 .

[30]  Xiliang Fan Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises , 2019 .

[31]  Laure Coutin,et al.  Stochastic analysis, rough path analysis and fractional Brownian motions , 2002 .

[32]  Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions , 2011, 1104.3884.

[33]  Fabrice Baudoin,et al.  Gradient Bounds for Solutions of Stochastic Differential Equations Driven by Fractional Brownian Motions , 2011, 1102.4601.

[34]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[35]  V. B. Uvarov,et al.  Special Functions of Mathematical Physics: A Unified Introduction with Applications , 1988 .

[36]  D. Nualart,et al.  A singular stochastic differential equation driven by fractional Brownian motion , 2007, 0711.2507.

[37]  Bruno Saussereau,et al.  Transportation inequalities for stochastic differential equations driven by a fractional Brownian motion , 2012, 1202.6558.

[38]  L. C. Young,et al.  An inequality of the Hölder type, connected with Stieltjes integration , 1936 .

[39]  Differential Equations Driven by Hölder Continuous Functions of Order Greater than 1/2 , 2006, math/0601628.