Uncovering the genetic blueprint of the C. elegans nervous system

Significance A fundamental question of neuroscience is how the brain wires itself. Here, we propose a modeling framework that explains how cellular connectivity emerges from neuronal identity, allowing us to offer experimentally falsifiable predictions on the genetic encoding of the connectome. The rapid advances in brain science require quantitative frameworks to integrate genetic and connectome information. The proposed model responds to this need, helping us unveil the genetically driven mechanisms that govern the formation of individual links in the brain. Despite rapid advances in connectome mapping and neuronal genetics, we lack theoretical and computational tools to unveil, in an experimentally testable fashion, the genetic mechanisms that govern neuronal wiring. Here we introduce a computational framework to link the adjacency matrix of a connectome to the expression patterns of its neurons, helping us uncover a set of genetic rules that govern the interactions between neurons in contact. The method incorporates the biological realities of the system, accounting for noise from data collection limitations, as well as spatial restrictions. The resulting methodology allows us to infer a network of 19 innexin interactions that govern the formation of gap junctions in Caenorhabditis elegans, five of which are already supported by experimental data. As advances in single-cell gene expression profiling increase the accuracy and the coverage of the data, the developed framework will allow researchers to systematically infer experimentally testable connection rules, offering mechanistic predictions for synapse and gap junction formation.

[1]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[2]  O. Hobert,et al.  Plasticity of the Electrical Connectome of C. elegans , 2019, Cell.

[3]  Christian C. Naus,et al.  Gap junctions in C. elegans , 2014, Front. Physiol..

[4]  Henry Kennedy,et al.  A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule , 2013, Neuron.

[5]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[6]  Zeynep F. Altun,et al.  Six Innexins Contribute to Electrical Coupling of C. elegans Body-Wall Muscle , 2013, PloS one.

[7]  D. Hall Gap junctions in C. elegans: Their roles in behavior and development , 2016, Developmental neurobiology.

[8]  Justus M. Kebschull,et al.  The logic of single-cell projections from visual cortex , 2018, Nature.

[9]  Shuiwang Ji,et al.  High-resolution prediction of mouse brain connectivity using gene expression patterns. , 2015, Methods.

[10]  Cori Bargmann,et al.  An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans , 2007, Cell.

[11]  G. Fishell,et al.  Interneuron Types as Attractors and Controllers. , 2020, Annual review of neuroscience.

[12]  Alison T. DePew,et al.  The Tenets of Teneurin: Conserved Mechanisms Regulate Diverse Developmental Processes in the Drosophila Nervous System , 2018, bioRxiv.

[13]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[14]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[15]  William R Schafer,et al.  Engineering new synaptic connections in the C. elegans connectome , 2015, Worm.

[16]  William R. Schafer,et al.  Genetics of Behavior in C. elegans , 2017 .

[17]  Albert-László Barabási,et al.  A Genetic Model of the Connectome , 2019, Neuron.

[18]  T. Südhof,et al.  Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits , 2017, Cell.

[19]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[20]  Travis A. Jarrell,et al.  The Connectome of a Decision-Making Neural Network , 2012, Science.

[21]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[22]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[23]  Hugo J. Bellen,et al.  Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins , 2015, Cell.

[24]  Oliver Hobert,et al.  Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans , 2016, Current Biology.

[25]  K. Willecke,et al.  Expression and functions of neuronal gap junctions , 2005, Nature Reviews Neuroscience.

[26]  Netta Cohen,et al.  Volumetric reconstruction of main Caenorhabditis elegans neuropil at two different time points , 2018 .

[27]  T. Südhof,et al.  Towards an Understanding of Synapse Formation , 2018, Neuron.

[28]  Ben D. Fulcher,et al.  Uncovering the Transcriptional Correlates of Hub Connectivity in Neural Networks , 2019, Front. Neural Circuits.

[29]  David G. Wilkinson,et al.  A single cell transcriptome atlas of the developing zebrafish hindbrain , 2020, Development.

[30]  Yoshinori Fujiyoshi,et al.  Oligomeric Structure and Functional Characterization of Caenorhabditis elegans Innexin-6 Gap Junction Protein* , 2013, The Journal of Biological Chemistry.

[31]  M. James,et al.  The generalised inverse , 1978, The Mathematical Gazette.

[32]  J. Bacon,et al.  Two Drosophila innexins are expressed in overlapping domains and cooperate to form gap-junction channels. , 2000, Molecular biology of the cell.

[33]  D. Garlaschelli,et al.  Reconstruction methods for networks: The case of economic and financial systems , 2018, Physics Reports.

[34]  Richard Roy,et al.  Regulation of intermuscular electrical coupling by the Caenorhabditis elegans innexin inx-6. , 2003, Molecular biology of the cell.

[35]  David M. Miller,et al.  Computational inference of the molecular logic for synaptic connectivity in C. elegans , 2006, ISMB.

[36]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  Giulio Cimini,et al.  The statistical physics of real-world networks , 2018, Nature Reviews Physics.

[38]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[39]  Oscar Marín,et al.  Development and Functional Diversification of Cortical Interneurons , 2018, Neuron.

[40]  Thomas L. Dean,et al.  The atoms of neural computation , 2014, Science.

[41]  D. Hall,et al.  The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans , 1990, Neuron.

[42]  Ben D. Fulcher,et al.  Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome , 2018, PLoS Comput. Biol..

[43]  Cornelia I Bargmann,et al.  UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation , 2006, Nature Neuroscience.

[44]  Kimberly Van Auken,et al.  WormBase: a comprehensive resource for nematode research , 2009, Nucleic Acids Res..

[45]  Kei Ito,et al.  A Connectome of the Adult Drosophila Central Brain , 2020, bioRxiv.

[46]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[47]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[48]  Alexander Meissner,et al.  Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. , 2010, Cell stem cell.

[49]  Erdem Varol,et al.  Unique homeobox codes delineate all C. elegans neuron classes , 2020, Nature.

[50]  Cori Bargmann,et al.  Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function , 2002, Nature Neuroscience.

[51]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[52]  Bohdan Zelinka On a problem of E. Prisner concerning the biclique operator , 2002 .

[53]  Eran Segal,et al.  Using Expression Profiles of Caenorhabditis elegans Neurons To Identify Genes That Mediate Synaptic Connectivity , 2008, PLoS Comput. Biol..

[54]  Allan Sly,et al.  Random graphs with a given degree sequence , 2010, 1005.1136.

[55]  Zeynep F. Altun,et al.  High resolution map of Caenorhabditis elegans gap junction proteins , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[56]  Isaac Meilijson,et al.  Gene Expression of Caenorhabditis elegans Neurons Carries Information on Their Synaptic Connectivity , 2006, PLoS Comput. Biol..

[57]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Circuit Architecture and Dynamics in Hippocampal Networks , 2017, Neuron.

[58]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[59]  Cornelia I Bargmann,et al.  Synaptic Specificity Is Generated by the Synaptic Guidepost Protein SYG-2 and Its Receptor, SYG-1 , 2004, Cell.

[60]  István A. Kovács,et al.  Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders , 2015, Cell.

[61]  W. Wadsworth,et al.  Identification of Domains of Netrin UNC-6 that Mediate Attractive and Repulsive Guidance and Responses from Cells and Growth Cones , 2002, The Journal of Neuroscience.

[62]  Z. J. Huang,et al.  Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity , 2017, Cell.

[63]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[64]  Sean M. O'Rourke,et al.  A Survey of New Temperature-Sensitive, Embryonic-Lethal Mutations in C. elegans: 24 Alleles of Thirteen Genes , 2011, PloS one.

[65]  L. Luo,et al.  Genetic Control of Wiring Specificity in the Fly Olfactory System , 2014, Genetics.