Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens

[1]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[2]  Constantine G. Lyketsos,et al.  130 Bilateral Fornix Deep Brain Stimulation for Alzheimer Disease: Surgical Safety in the ADvance Trial , 2015 .

[3]  N. Burgess,et al.  Evidence for holistic episodic recollection via hippocampal pattern completion , 2015, Nature Communications.

[4]  J. Felmlee,et al.  Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation. , 2015, Mayo Clinic proceedings.

[5]  Gwenn S. Smith,et al.  Deep Brain Stimulation Influences Brain Structure in Alzheimer's Disease , 2015, Brain Stimulation.

[6]  Robert M Sears,et al.  Active Avoidance Requires a Serial Basal Amygdala to Nucleus Accumbens Shell Circuit , 2015, The Journal of Neuroscience.

[7]  A. Bonci,et al.  Dopaminergic and glutamatergic microdomains within a subset of rodent mesoaccumbens axons , 2015, Nature Neuroscience.

[8]  S. Floresco The nucleus accumbens: an interface between cognition, emotion, and action. , 2015, Annual review of psychology.

[9]  N. Logothetis,et al.  Dopamine-Induced Dissociation of BOLD and Neural Activity in Macaque Visual Cortex , 2014, Current Biology.

[10]  Mauricio R. Delgado,et al.  Savoring the Past: Positive Memories Evoke Value Representations in the Striatum , 2014, Neuron.

[11]  C. Lüscher,et al.  Pathological circuit function underlying addiction and anxiety disorders , 2014, Nature Neuroscience.

[12]  Michael S Okun,et al.  Deep-brain stimulation--entering the era of human neural-network modulation. , 2014, The New England journal of medicine.

[13]  Arne D. Ekstrom,et al.  Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans , 2014, Scientific Reports.

[14]  Nicole M. Long,et al.  Ventral Striatum and the Evaluation of Memory Retrieval Strategies , 2014, Journal of Cognitive Neuroscience.

[15]  Erika K. Ross,et al.  Subthalamic Nucleus Deep Brain Stimulation Induces Motor Network BOLD Activation: Use of a High Precision MRI Guided Stereotactic System for Nonhuman Primates , 2014, Brain Stimulation.

[16]  Juan Zhou,et al.  Network Dysfunction in Alzheimer’s Disease and Frontotemporal Dementia: Implications for Psychiatry , 2014, Biological Psychiatry.

[17]  O. Sporns Contributions and challenges for network models in cognitive neuroscience , 2014, Nature Neuroscience.

[18]  M. Frye,et al.  Centromedian-Parafascicular Deep Brain Stimulation Induces Differential Functional Inhibition of the Motor, Associative, and Limbic Circuits in Large Animals , 2013, Biological Psychiatry.

[19]  V. Visser-Vandewalle,et al.  Deep Brain Stimulation as a Tool for Improving Cognitive Functioning in Alzheimer’s Dementia: A Systematic Review , 2013, Front. Psychiatry.

[20]  N. Axmacher,et al.  Electrical engram: how deep brain stimulation affects memory , 2013, Trends in Cognitive Sciences.

[21]  Adrian W Laxton,et al.  Deep brain stimulation for the treatment of Alzheimer disease and dementias. , 2013, World neurosurgery.

[22]  Hoon-Ki Min,et al.  Synchronized electrical stimulation of the rat medial forebrain bundle and perforant pathway generates an additive BOLD response in the nucleus accumbens and prefrontal cortex , 2013, NeuroImage.

[23]  D. Shohamy,et al.  Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans , 2013, Hippocampus.

[24]  H. Steinbusch,et al.  Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: The role of stimulation parameters , 2013, Brain Stimulation.

[25]  Frank Angenstein,et al.  Variations in the temporal pattern of perforant pathway stimulation control the activity in the mesolimbic pathway , 2013, NeuroImage.

[26]  Hoon-Ki Min,et al.  Deep brain stimulation induces BOLD activation in motor and non-motor networks: An fMRI comparison study of STN and EN/GPi DBS in large animals , 2012, NeuroImage.

[27]  Andreea Oliviana Diaconescu,et al.  Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. , 2012, Archives of neurology.

[28]  Jason M. Scimeca,et al.  Striatal Contributions to Declarative Memory Retrieval , 2012, Neuron.

[29]  Christopher J. Kimble,et al.  Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. , 2012, Mayo Clinic proceedings.

[30]  I. Fried,et al.  Memory enhancement and deep-brain stimulation of the entorhinal area. , 2012, The New England journal of medicine.

[31]  Clement Hamani,et al.  A multicenter pilot study of subcallosal cingulate area deep brain stimulation for treatment-resistant depression. , 2012, Journal of neurosurgery.

[32]  Emrah Duzel,et al.  A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP , 2011, Trends in Neurosciences.

[33]  T. Robbins,et al.  The hippocampal–striatal axis in learning, prediction and goal-directed behavior , 2011, Trends in Neurosciences.

[34]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[35]  R. Wise,et al.  Linking Context with Reward: A Functional Circuit from Hippocampal CA3 to Ventral Tegmental Area , 2011, Science.

[36]  A. Grace,et al.  Aversive Stimuli Alter Ventral Tegmental Area Dopamine Neuron Activity via a Common Action in the Ventral Hippocampus , 2011, The Journal of Neuroscience.

[37]  Margaret F. Carr,et al.  Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval , 2011, Nature Neuroscience.

[38]  T. Robinson,et al.  A selective role for dopamine in reward learning , 2010, Nature.

[39]  R. Wennberg,et al.  A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease , 2010, Annals of neurology.

[40]  D. Shohamy,et al.  Dopamine and adaptive memory , 2010, Trends in Cognitive Sciences.

[41]  M. Vérin,et al.  A three-dimensional digital segmented and deformable brain atlas of the domestic pig , 2010, Journal of Neuroscience Methods.

[42]  A. Lozano,et al.  Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. , 2010, Journal of neurosurgery.

[43]  N. Swerdlow,et al.  Projections from ventral hippocampus to medial prefrontal cortex but not nucleus accumbens remain functional after fornix lesions in rats , 2010, Neuroscience.

[44]  G. Stuber,et al.  Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate , 2010, The Journal of Neuroscience.

[45]  Philip J. Hahn,et al.  Network perspectives on the mechanisms of deep brain stimulation , 2010, Neurobiology of Disease.

[46]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[47]  Young-Min Shon,et al.  Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle. , 2010, Journal of neurosurgery.

[48]  R. Morris,et al.  Dopamine and Memory: Modulation of the Persistence of Memory for Novel Hippocampal NMDA Receptor-Dependent Paired Associates , 2010, The Journal of Neuroscience.

[49]  Pedram Mohseni,et al.  Development of the Wireless Instantaneous Neurotransmitter Concentration System for intraoperative neurochemical monitoring using fast-scan cyclic voltammetry. , 2009, Journal of neurosurgery.

[50]  I. Izquierdo,et al.  Dopamine Controls Persistence of Long-Term Memory Storage , 2009, Science.

[51]  J. Aggleton,et al.  Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods , 2009, Proceedings of the National Academy of Sciences.

[52]  A. Oliverio,et al.  Role of dopamine receptors subtypes, D1-like and D2-like, within the nucleus accumbens subregions, core and shell, on memory consolidation in the one-trial inhibitory avoidance task. , 2008, Learning & memory.

[53]  A. Grace,et al.  Limbic and cortical information processing in the nucleus accumbens , 2008, Trends in Neurosciences.

[54]  Daniela Montaldi,et al.  A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory , 2008, Nature Neuroscience.

[55]  D. Gaffan,et al.  Addition of fornix transection to frontal-temporal disconnection increases the impairment in object-in-place memory in macaque monkeys , 2008, The European journal of neuroscience.

[56]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[57]  A. Boddy,et al.  Molecular targeting of retinoic acid metabolism in neuroblastoma: the role of the CYP26 inhibitor R116010 in vitro and in vivo , 2007, British Journal of Cancer.

[58]  Richard C Saunders,et al.  Origin and topography of fibers contributing to the fornix in macaque monkeys , 2007, Hippocampus.

[59]  V. Rajmohan,et al.  The limbic system , 2007, Indian journal of psychiatry.

[60]  Brian Knutson,et al.  Linking nucleus accumbens dopamine and blood oxygenation , 2007, Psychopharmacology.

[61]  E. Snyder,et al.  Large animal models are critical for rationally advancing regenerative therapies. , 2006, Regenerative medicine.

[62]  Brian Knutson,et al.  Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation , 2006, Neuron.

[63]  Tim D. Fryer,et al.  Declarative memory impairments in Alzheimer's disease and semantic dementia , 2006, NeuroImage.

[64]  Marc Ansseau,et al.  Dopamine–glutamate reciprocal modulation of release and motor responses in the rat caudate–putamen and nucleus accumbens of “intact” animals , 2005, Brain Research Reviews.

[65]  Benjamin J. Shannon,et al.  Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory , 2005, The Journal of Neuroscience.

[66]  James L McGaugh,et al.  Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions. , 2005, Learning & memory.

[67]  P. Greene,et al.  Deep-brain stimulation for generalized dystonia. , 2005, The New England journal of medicine.

[68]  H. Heinze,et al.  Reward-Related fMRI Activation of Dopaminergic Midbrain Is Associated with Enhanced Hippocampus- Dependent Long-Term Memory Formation , 2005, Neuron.

[69]  E. D. Leonibus,et al.  Co-activation of glutamate and dopamine receptors within the nucleus accumbens is required for spatial memory consolidation in mice , 2005, Psychopharmacology.

[70]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[71]  L. Squire Memory systems of the brain: A brief history and current perspective , 2004, Neurobiology of Learning and Memory.

[72]  A. Kelley Memory and Addiction Shared Neural Circuitry and Molecular Mechanisms , 2004, Neuron.

[73]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[74]  Ali Charara,et al.  Electrophysiological Interactions between Striatal Glutamatergic and Dopaminergic Systems , 2003, Annals of the New York Academy of Sciences.

[75]  A. Grace,et al.  Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission , 2003, Nature Neuroscience.

[76]  Eleanor A Maguire,et al.  Aging affects the engagement of the hippocampus during autobiographical memory retrieval. , 2003, Brain : a journal of neurology.

[77]  Richard C Saunders,et al.  Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the Macaque brain , 2002, The Journal of comparative neurology.

[78]  P. Starr,et al.  Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. , 2002, Journal of neurosurgery.

[79]  A. Grace,et al.  Glutamatergic Afferents from the Hippocampus to the Nucleus Accumbens Regulate Activity of Ventral Tegmental Area Dopamine Neurons , 2001, The Journal of Neuroscience.

[80]  M. Mesulam,et al.  A Plasticity‐Based Theory of the Pathogenesis of Alzheimer's Disease , 2000, Annals of the New York Academy of Sciences.

[81]  S. Hyman,et al.  Addiction, Dopamine, and the Molecular Mechanisms of Memory , 2000, Neuron.

[82]  R. Wise,et al.  Chemical Stimulation of the Ventral Hippocampus Elevates Nucleus Accumbens Dopamine by Activating Dopaminergic Neurons of the Ventral Tegmental Area , 2000, The Journal of Neuroscience.

[83]  A. McIntosh,et al.  Mapping cognition to the brain through neural interactions. , 1999, Memory.

[84]  J. Marcilloux,et al.  Stereotaxic atlas of the pig brain , 1999, Brain Research Bulletin.

[85]  Scott T. Grafton,et al.  Amygdala activity related to enhanced memory for pleasant and aversive stimuli , 1999, Nature Neuroscience.

[86]  P. Goldman-Rakic,et al.  Dopaminergic regulation of cerebral cortical microcirculation , 1998, Nature Neuroscience.

[87]  Changiz Geula,et al.  Abnormalities of neural circuitry in Alzheimer's disease , 1998, Neurology.

[88]  B. Setlow The nucleus accumbens and learning and memory , 1997, Journal of neuroscience research.

[89]  S. Floresco,et al.  Stimulation of the Ventral Subiculum of the Hippocampus Evokes Glutamate Receptor‐mediated Changes in Dopamine Efflux in the Rat Nucleus Accumbens , 1997, The European journal of neuroscience.

[90]  R. Simon,et al.  Deep Prepiriform Cortex Modulates Neuronal Cell Death in Global Ischemia , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[91]  J. Stephenson,et al.  Dopamine efflux in the rat nucleus accumbens evoked by dopamine receptor stimulation in the entorhinal cortex is modulated by oestradiol and progesterone , 1997, Synapse.

[92]  A. Grace,et al.  Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  C. Geula,et al.  Human striatum: Chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease , 1994, Neuroscience.

[94]  C. Pennartz,et al.  Responses of the nucleus accumbens following fornix/fimbria stimulation in the rat. Identification and long-term potentiation of mono- and polysynaptic pathways , 1993, Neuroscience.

[95]  L. Squire Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. , 1992, Psychological review.

[96]  A. Benabid,et al.  Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus , 1991, The Lancet.

[97]  C. Pennartz,et al.  Paired-pulse facilitation in the nucleus accumbens following stimulation of subicular inputs in the rat , 1990, Neuroscience.

[98]  A. D. Smith,et al.  Convergence of hippocampal and dopaminergic input onto identified neurons in the nucleus accumbens of the rat. , 1989, Journal of chemical neuroanatomy.

[99]  R. Fariello,et al.  The prepiriform cortex in dementia of the Alzheimer type. , 1987, Archives of neurology.

[100]  G. Mogenson,et al.  An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens , 1985, Neuroscience.

[101]  G. Mogenson,et al.  Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system , 1984, Brain Research.

[102]  G. V. Van Hoesen,et al.  Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. , 1984, Science.

[103]  A. Kelley,et al.  The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde and retrograde-horseradish peroxidase study , 1982, Neuroscience.

[104]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[105]  M. Gelabert-González,et al.  [Deep brain stimulation in Parkinson's disease]. , 2013, Revista de neurologia.

[106]  A. Grace,et al.  Cortico-Basal Ganglia Reward Network: Microcircuitry , 2010, Neuropsychopharmacology.

[107]  D. Arnolds,et al.  A functional link between the limbic cortex and ventral striatum: Physiology of the subiculum accumbens pathway , 2004, Experimental Brain Research.

[108]  G. V. Van Hoesen,et al.  The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. , 1991, Cerebral cortex.

[109]  A. Nappi,et al.  Alzheimer ' s Disease : Cell-Specific Pathology Isolates the Hippocampal Formation , 2022 .

[110]  S. Flagel,et al.  A Selective Role for Dopamine in Stimulus–reward Learning , 2022 .