On the number of limit cycles in general planar piecewise linear systems

Much progress has been made in planar piecewise smooth dynamical systems. However there remain many important problems to be solved even in planar piecewise linear systems. In this paper, we investigate the number of limit cycles of planar piecewise linear systems with two linear regions sharing the same equilibrium. By studying the implicit Poincare map induced by the discontinuity boundary, some cases when there exist at most 2 limit cycles is completely investigated. Especially, based on these results we provide an example along with numerical simulations to illustrate the existence of 3 limit cycles thus have a negative answer to the conjecture by M. Han and W. Zhang [11](J. Differ.Equations 248 (2010) 2399-2416) that piecewise linear systems with only two regions have at most 2 limit cycles.

[1]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.

[2]  Mario di Bernardo,et al.  Qualitative theory of non-smooth dynamical systems , 2008 .

[3]  Fotios Giannakopoulos,et al.  Planar systems of piecewise linear differential equations with a line of discontinuity , 2001 .

[4]  Valery A. Gaiko,et al.  A Piecewise Linear Dynamical System with Two Dropping Sections , 2009, Int. J. Bifurc. Chaos.

[5]  Maoan Han,et al.  On Hopf bifurcation in non-smooth planar systems , 2010 .

[6]  Enrique Ponce,et al.  The continuous matching of two stable linear systems can be unstable , 2006 .

[7]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[8]  Joan Torregrosa,et al.  Center-Focus Problem for Discontinuous Planar Differential Equations , 2003, Int. J. Bifurc. Chaos.

[9]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[10]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[11]  Arnaud Tonnelier,et al.  On the Number of Limit Cycles in Piecewise-Linear Liénard Systems , 2005, Int. J. Bifurc. Chaos.

[12]  Jaume Llibre,et al.  Piecewise Linear Feedback Systems with Arbitrary Number of Limit Cycles , 2003, Int. J. Bifurc. Chaos.

[13]  James D. Meiss,et al.  Andronov-Hopf bifurcations in planar, piecewise-smooth, continuous flows , 2007, nlin/0701036.

[14]  Jaume Llibre,et al.  On the existence and uniqueness of limit cycles in Liénard differential equations allowing discontinuities , 2008 .

[15]  Tassilo Küpper,et al.  Generalized Hopf bifurcation emanated from a corner for piecewise smooth planar systems , 2005 .

[16]  Enrique Ponce,et al.  Bifurcation Sets of Symmetrical Continuous Piecewise Linear Systems with Three Zones , 2002, Int. J. Bifurc. Chaos.

[17]  Enrique Ponce,et al.  Hopf-like bifurcations in planar piecewise linear systems , 1997 .

[18]  Enrique Ponce,et al.  On simplifying and classifying piecewise-linear systems , 2002 .

[19]  Armengol Gasull,et al.  Degenerate hopf bifurcations in discontinuous planar systems , 2001 .

[20]  Jaume Llibre,et al.  Bifurcation of a periodic orbit from infinity in planar piecewise linear vector fields , 1999 .

[21]  Tassilo Küpper,et al.  Generalized Hopf bifurcation for non-smooth planar systems , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  J. Llibre,et al.  Hopf bifurcation from infinity for planar control systems , 1997 .

[23]  Zhengdong Du,et al.  Bifurcation of periodic orbits in a class of planar Filippov systems , 2008 .

[24]  Xia Liu,et al.  Hopf bifurcation for nonsmooth LiéNard Systems , 2009, Int. J. Bifurc. Chaos.

[25]  Wolf-Jürgen Beyn,et al.  Generalized Hopf Bifurcation for Planar Filippov Systems Continuous at the Origin , 2006, J. Nonlinear Sci..