High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states

This study proposes the first high-capacity quantum secure direct communication (QSDC) with two-photon six-qubit hyper-entangled Bell states in two longitudinal momentum and polarization degrees of freedom (DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits. Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication. The QSDC protocol has good applications in the future quantum communication because of all these features.

[1]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[2]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[3]  Yan Xia,et al.  Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics , 2014, Quantum Information Processing.

[4]  Dongyang Long,et al.  Quantum Secure Direct Communication with Two-Photon Four-Qubit Cluster States , 2012 .

[5]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[6]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[7]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[8]  Shen-Shen Yang,et al.  High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution , 2015 .

[9]  Giuseppe Vallone,et al.  Multipath entanglement of two photons. , 2008, Physical review letters.

[10]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[11]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[12]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[13]  Shohini Ghose,et al.  Hyperconcentration for multipartite entanglement via linear optics , 2014, 1601.03755.

[14]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[15]  Shi-ning Zhu,et al.  Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement , 2011 .

[16]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.

[17]  Yonggang Wang,et al.  FPGA based digital phase-coding quantum key distribution system , 2015 .

[18]  Fu-Guo Deng,et al.  Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime , 2014, 1411.0274.

[19]  Min Jiang An optimized quantum information splitting scheme with multiple controllers , 2016, Quantum Inf. Process..

[20]  Yan Chang,et al.  Quantum secure direct communication and authentication protocol with single photons , 2013 .

[21]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[22]  Bin Gu,et al.  Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel , 2011 .

[23]  R. Srikanth,et al.  Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique , 2012, Quantum Information Processing.

[24]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[25]  Chuan Wang,et al.  Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities , 2014 .

[26]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[27]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[28]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[29]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[30]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[31]  Fu-Guo Deng,et al.  Robust hyperparallel photonic quantum entangling gate with cavity QED. , 2017, Optics express.

[32]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[33]  Bao-Cang Ren,et al.  Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates , 2015, Scientific Reports.

[34]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[35]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[36]  Gu Bin,et al.  A two-step quantum secure direct communication protocol with hyperentanglement , 2011 .

[37]  Fu-Guo Deng,et al.  Hyper-parallel photonic quantum computation with coupled quantum dots , 2013, Scientific Reports.

[38]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[39]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[40]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[41]  Qing Ai,et al.  Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity , 2015, Scientific Reports.

[42]  Qian Liu,et al.  Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators , 2015, 1507.06108.

[43]  A. Szameit,et al.  A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization , 2015 .

[44]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[45]  Girish S. Agarwal,et al.  Entanglement of polarization and orbital angular momentum , 2015 .

[46]  Bin Gu,et al.  Robust Quantum Secure Communication with Spatial Quantum States of Single Photons , 2013 .

[47]  Qian Liu,et al.  Efficient hyperentanglement purification for two-photon six-qubit quantum systems , 2016 .

[48]  M Mirrahimi,et al.  Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States. , 2015, Physical review letters.

[49]  Yan Xia,et al.  Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity , 2016, Quantum Inf. Process..

[50]  Chuan Wang,et al.  Nonlocal hyperconcentration on entangled photons using photonic module system , 2016 .

[51]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[52]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[53]  Gui-Lu Long,et al.  Deterministic error correction for nonlocal spatial-polarization hyperentanglement , 2016, Scientific Reports.

[54]  Tao Li,et al.  High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement , 2011 .

[55]  Fang-Fang Du,et al.  Refined hyperentanglement purification of two-photon systems for high-capacity quantum communication with cavity-assisted interaction , 2016 .

[56]  Tie-Jun Wang,et al.  Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities , 2012 .

[57]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.

[58]  Tie-Jun Wang,et al.  Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities , 2012 .

[59]  Gui-Lu Long,et al.  Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities , 2016 .

[60]  Xi-Han Li,et al.  Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. , 2015, Optics express.

[61]  Qing Ai,et al.  Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. , 2016, Optics express.

[62]  Chong Li,et al.  Quantum Secure Direct Communication by Using General Entangled States , 2011 .

[63]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[64]  Shohini Ghose,et al.  Hyperentanglement concentration for time-bin and polarization hyperentangled photons , 2015, 1502.02891.

[65]  Fu-Guo Deng,et al.  Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities , 2013, 1309.0168.

[66]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[67]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[68]  G. Vallone,et al.  Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. , 2009, Physical review letters.

[69]  Fu-Guo Deng,et al.  Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. , 2016, Optics express.

[70]  Wei Huang,et al.  Improved multiparty quantum key agreement in travelling mode , 2016, Science China Physics, Mechanics & Astronomy.

[71]  Wei Zhang,et al.  Raman quantum memory of photonic polarized entanglement , 2014, 1410.7101.

[72]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[73]  Wei Jiang,et al.  High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom , 2012 .

[74]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[75]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[76]  Ru Zhang,et al.  One-step hyperentanglement purification and hyperdistillation with linear optics. , 2015, Optics express.

[77]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[78]  Shohini Ghose,et al.  Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity , 2016 .

[79]  Yan Wang,et al.  Secure quantum key distribution network with Bell states and local unitary operations , 2007, 0705.1746.

[80]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[81]  Wei Zhang,et al.  Quantum Secure Direct Communication with Quantum Memory. , 2016, Physical review letters.

[82]  Fuguo Deng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2010 .

[83]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[84]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.